11,582 research outputs found

    Reflection asymmetric relativistic mean field approach and its application to the octupole deformed nucleus 226^{226}Ra

    Full text link
    A Reflection ASymmetric Relativistic Mean Field (RAS-RMF) approach is developed by expanding the equations of motion for both the nucleons and the mesons on the eigenfunctions of the two-center harmonic-oscillator potential. The efficiency and reliability of the RAS-RMF approach are demonstrated in its application to the well-known octupole deformed nucleus 226^{226}Ra and the available data, including the binding energy and the deformation parameters, are well reproduced.Comment: 4 pages, 2 figures, and 2 tables, to appear in Chinese Physics Letter

    Lexical-Semantic Organization in Bilingually Developing Deaf Children With ASL-Dominant Language Exposure: Evidence From a Repeated Meaning Association Task

    Get PDF
    This study compared the lexical-semantic organization skills of bilingually developing deaf children in American Sign Language (ASL) and English with those of a monolingual hearing group. A repeated meaning-association paradigm was used to assess retrieval of semantic relations in deaf 6–10-year-olds exposed to ASL from birth by their deaf parents, with responses coded as syntagmatic or paradigmatic. Deaf children's responses in ASL and English were compared at the within-group level, and their ASL was compared to the English responses of age-matched monolingual hearing children. Finally, the two groups were compared on their semantic performance in English. Results showed similar patterns for deaf children's responses in ASL and English to those of hearing monolinguals, but subtle language differences were also revealed. These findings suggest that sign bilinguals’ language development in ASL and English is driven by similar underlying learning mechanisms rooted in the development of semantic frameworks

    Absence of correlation between built-in electric dipole moment and quantum Stark effect in InAs/GaAs self-assembled quantum dots

    Full text link
    We report significant deviations from the usual quadratic dependence of the ground state interband transition energy on applied electric fields in InAs/GaAs self-assembled quantum dots. In particular, we show that conventional second-order perturbation theory fails to correctly describe the Stark shift for electric field below F=10F = 10 kV/cm in high dots. Eight-band kp{\bf k}\cdot{\bf p} calculations demonstrate this effect is predominantly due to the three-dimensional strain field distribution which for various dot shapes and stoichiometric compositions drastically affects the hole ground state. Our conclusions are supported by two independent experiments.Comment: 4 pages, 4 figure

    Charge Transport in a Quantum Electromechanical System

    Get PDF
    We describe a quantum electromechanical system(QEMS) comprising a single quantum dot harmonically bound between two electrodes and facilitating a tunneling current between them. An example of such a system is a fullerene molecule between two metal electrodes [Park et al., Nature, 407, 57 (2000)]. The description is based on a quantum master equation for the density operator of the electronic and vibrational degrees of freedom and thus incorporates the dynamics of both diagonal (population) and off diagonal (coherence) terms. We derive coupled equations of motion for the electron occupation number of the dot and the vibrational degrees of freedom, including damping of the vibration and thermo-mechanical noise. This dynamical description is related to observable features of the system including the stationary current as a function of bias voltage.Comment: To appear in Phys. Rev. B., 13 pages, single colum

    Experimental verification of a self-consistent theory of the first-, second-, and third-order (non)linear optical response

    Full text link
    We show that a combination of linear absorption spectroscopy, hyper-Rayleigh scattering, and a theoretical analysis using sum rules to reduce the size of the parameter space leads to a prediction of the two-photon absorption cross-section of the dye AF455 that agrees with two-photon absorption spectroscopy. Our procedure, which demands self-consistency between several measurement techniques and does not use adjustable parameters, provides a means for determining transition moments between the dominant excited states based strictly on experimental characterization. This is made possible by our new approach that uses sum rules and molecular symmetry to rigorously reduce the number of required physical quantities.Comment: 10 pages, 9 figure

    Gaussian approximation and single-spin measurement in OSCAR MRFM with spin noise

    Full text link
    A promising technique for measuring single electron spins is magnetic resonance force microscopy (MRFM), in which a microcantilever with a permanent magnetic tip is resonantly driven by a single oscillating spin. If the quality factor of the cantilever is high enough, this signal will be amplified over time to the point that it can be detected by optical or other techniques. An important requirement, however, is that this measurement process occur on a time scale short compared to any noise which disturbs the orientation of the measured spin. We describe a model of spin noise for the MRFM system, and show how this noise is transformed to become time-dependent in going to the usual rotating frame. We simplify the description of the cantilever-spin system by approximating the cantilever wavefunction as a Gaussian wavepacket, and show that the resulting approximation closely matches the full quantum behavior. We then examine the problem of detecting the signal for a cantilever with thermal noise and spin with spin noise, deriving a condition for this to be a useful measurement.Comment: 12 pages, 8 figures in EPS format, RevTeX 4.

    Characteristics of phonon transmission across epitaxial interfaces: a lattice dynamic study

    Full text link
    Phonon transmission across epitaxial interfaces is studied within the lattice dynamic approach. The transmission shows weak dependence on frequency for the lattice wave with a fixed angle of incidence. The dependence on azimuth angle is found to be related to the symmetry of the boundary interface. The transmission varies smoothly with the change of the incident angle. A critical angle of incidence exists when the phonon is incident from the side with large group velocities to the side with low ones. No significant mode conversion is observed among different acoustic wave branches at the interface, except when the incident angle is near the critical value. Our theoretical result of the Kapitza conductance GKG_{K} across the Si-Ge (100) interface at temperature T=200T=200 K is 4.6\times10^{8} {\rm WK}^{-1}{\rmm}^{-2}. A scaling law GKT2.87G_K \propto T^{2.87} at low temperature is also reported. Based on the features of transmission obtained within lattice dynamic approach, we propose a simplified formula for thermal conductanceacross the epitaxial interface. A reasonable consistency is found between the calculated values and the experimentally measured ones.Comment: 8 figure

    Exchange interaction effects in the thermodynamic properties of quantum dots

    Full text link
    We study electron-electron interaction effects in the thermodynamic properties of quantum-dot systems. We obtain the direct and exchange contributions to the specific heat C_v in the self-consistent Hartree-Fock approximation at finite temperatures. An exchange-induced phase transition is observed and the transition temperature is shown to be inversely proportional to the size of the system. The exchange contribution to C_v dominates over the direct and kinetic contributions in the intermediate regime of interaction strength (r_s ~ 1). Furthermore, the electron-electron interaction modifies both the amplitude and the period of magnetic field induced oscillations in C_v.Comment: 4 pages, 4 figures; To appear in Phys. Rev.
    corecore