17 research outputs found

    The Antioxidant and Enzyme Inhibitory Potential of n-Hexane-Extracted Oils Obtained from Three Egyptian Cultivars of the Golden Dewdrop Duranta erecta Linn. Supported by Their GC-MS Metabolome Analysis and Docking Studies

    No full text
    Duranta erecta Linn. has a longstanding history for use in folk remedy for several disorders. Its hydroalcoholic extract has been investigated intensely in the treatment of many ailments, but to date very few data are presented to explain the pharmacological use of its oil. In this study, the chemical profiles of the leaf oils extracted from three Egyptian Duranta erecta cultivars, namely ‘Green’, ‘Golden edge’, and ‘Variegata’ are traced using GC-MS analysis. D. erecta ‘Green’ showed predominance of vitamin E (22.7%) and thunbergol (15%) whereas D. erecta ‘Golden edge’ and ‘Variegata’ contained tetratetracontane as a major component in their oils. The highest phenolic and flavonoid contents, displayed as gallic acid and rutin equivalents per gram oil, respectively, were observed in the ‘Golden edge’ and ‘Variegata’ cultivars, which was reflected by their strong DPPH and ABTS scavenging activities as well as the highest reducing power in both CUPRAC and FRAP assays. D. erecta ‘Green’ displayed better metal chelating potential, which may be attributed to its content of vitamin E. All cultivars showed similar enzyme inhibitory profiles. The best inhibition of α-glucosidase and α-amylase was observed by D. erecta ‘Green’. In silico studies of the major constituents docked on the active sites of the target enzymes NADPH oxidase, amylase, glucosidase, butyrylcholinesterase, and tyrosinase revealed high binding scores, which justified the biological activities of the tested oils

    Chemical Constituents, Antioxidant, and Enzyme Inhibitory Activities Supported by In-Silico Study of n-Hexane Extract and Essential Oil of Guava Leaves

    No full text
    Psidium guajava (Guava tree) is one of the most widely known species in the family Myrtaceae. The Guava tree has been reported for its potential antioxidant, anti-inflammatory, antimicrobial, and cytotoxic activities. In the current study, the chemical compositions of the n-hexane extract and the essential oil of P. guajava were investigated using the GC/MS analysis, along with an evaluation of their antioxidant potential, and an investigation into the enzyme inhibition of acetylcholinesterase (AChE), butyrylcholinesterase (BchE), tyrosinase, α-amylase, and α-glucosidase. Moreover, molecular docking of the major identified active sites of the target enzymes were investigated. The chemical characterization of the n-hexane extract and essential oil revealed that squalene (9.76%), α-tocopherol (8.53%), and γ-sitosterol (3.90%) are the major compounds in the n-hexane extract. In contrast, the major constituents of the essential oil are D-limonene (36.68%) and viridiflorol (9.68%). The n-hexane extract showed more antioxidant potential in the cupric reducing antioxidant capacity (CUPRAC), the ferric reducing power (FRAP), and the metal chelating ability (MCA) assays, equivalent to 70.80 ± 1.46 mg TE/g, 26.01 ± 0.97 mg TE/g, and 24.83 ± 0.35 mg EDTAE/g, respectively. In the phosphomolybdenum (PM) assay, the essential oil showed more antioxidant activity equivalent to 2.58 ± 0.14 mmol TE/g. The essential oil demonstrated a potent BChE and tyrosinase inhibitory ability at 6.85 ± 0.03 mg GALAE/g and 61.70 ± 3.21 mg KAE/g, respectively. The α-amylase, and α-glucosidase inhibitory activity of the n-hexane extract and the essential oil varied from 0.52 to 1.49 mmol ACAE/g. Additionally, the molecular docking study revealed that the major compounds achieved acceptable binding scores upon docking with the tested enzymes. Consequently, the P. guajava n-hexane extract and oil can be used as a promising candidate for the development of novel treatment strategies for oxidative stress, neurodegeneration, and diabetes mellitus diseases

    Highly functionalized terpyridines as competitive inhibitors of AKAP-PKA interactions.

    Get PDF
    A good fit: Interactions between A-kinase anchoring proteins (AKAPs) and protein kinaseA (PKA) play key roles in a plethora of physiologically relevant processes whose dysregulation causes or is associated with diseases such as heart failure. Terpyridines have been developed as α-helix mimetics for the inhibition of such interactions and are the first biologically active, nonpeptidic compounds that block the AKAP binding site of PKA. © 2013 The Authors. Published by Wiley-VCH Verlag GmbH and Co. KGaA. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited
    corecore