216 research outputs found
Interlayer tunneling in counterflow experiments on the excitonic condensate in quantum Hall bilayers
The effect of tunneling on the transport properties of} quantum Hall double
layers in the regime of the excitonic condensate at total filling factor one is
studied in counterflow experiments. If the tunnel current is smaller than a
critical , tunneling is large and is effectively shorting the two layers.
For tunneling becomes negligible. Surprisingly, the transition
between the two tunneling regimes has only a minor impact on the features of
the filling-factor one state as observed in magneto-transport, but at currents
exceeding the resistance along the layers increases rapidly
Acoustic Measurements of the Stripe and the Bubble Quantum Hall Phases
We launch surface acoustic waves (SAW) along both the directions of a Hall bar and measure the anisotropic conductivity
in a high purity GaAs 2-D electron system in the Quantum Hall regime of the
stripe and the bubble phases. In the anisotropic stripe phase, SAW propagating
along the "easy" direction. In the isotropic bubble phase,
the SAW data show compressible behavior in both directions, in marked contrast
to the incompressible quantum Hall behavior seen in transport measurements.
These results challenge models that assume that both the stripe and the bubble
phase consist of incompressible domains and raise important questions about the
role of domain boundaries in SAW propagation.Comment: Published version from New Journal of Physic
Anomalous resistance overshoot in the integer quantum Hall effect
In this work we report experiments on defined by shallow etching narrow Hall
bars. The magneto-transport properties of intermediate mobility two-dimensional
electron systems are investigated and analyzed within the screening theory of
the integer quantized Hall effect. We observe a non-monotonic increase of Hall
resistance at the low magnetic field ends of the quantized plateaus, known as
the overshoot effect. Unexpectedly, for Hall bars that are defined by shallow
chemical etching the overshoot effect becomes more pronounced at elevated
temperatures. We observe the overshoot effect at odd and even integer plateaus,
which favor a spin independent explanation, in contrast to discussion in the
literature. In a second set of the experiments, we investigate the overshoot
effect in gate defined Hall bar and explicitly show that the amplitude of the
overshoot effect can be directly controlled by gate voltages. We offer a
comprehensive explanation based on scattering between evanescent incompressible
channels.Comment: 7 pages and 5 figure
Electron spin resonance on a 2-dimensional electron gas in a single AlAs quantum well
Direct electron spin resonance (ESR) on a high mobility two dimensional
electron gas in a single AlAs quantum well reveals an electronic -factor of
1.991 at 9.35 GHz and 1.989 at 34 GHz with a minimum linewidth of 7 Gauss. The
ESR amplitude and its temperature dependence suggest that the signal originates
from the effective magnetic field caused by the spin orbit-interaction and a
modulation of the electron wavevector caused by the microwave electric field.
This contrasts markedly to conventional ESR that detects through the microwave
magnetic field.Comment: 4 pages, 4 figure
Stable Branched Electron Flow
The pattern of branched electron flow revealed by scanning gate microscopy
shows the distribution of ballistic electron trajectories. The details of the
pattern are determined by the correlated potential of remote dopants with an
amplitude far below the Fermi energy. We find that the pattern persists even if
the electron density is significantly reduced such that the change in Fermi
energy exceeds the background potential amplitude. The branch pattern is robust
against changes in charge carrier density, but not against changes in the
background potential caused by additional illumination of the sample.Comment: Accepted for publication in New Journal of Physic
- …