28,548 research outputs found

    Higgs bosons of a supersymmetric U(1)′U(1)' model at the ILC

    Full text link
    We study the scalar Higgs sector of the next-to-minimal supersymmetric standard model with an extra U(1), which has two Higgs doublets and a Higgs singlet, in the light leptophobic Z′Z' scenario where the extra neutral gauge boson Z′Z' does not couple to charged leptons. In this model, we find that the sum of the squared coupling coefficients of the three neutral scalar Higgs bosons to ZZZZ, normalized by the corresponding SM coupling coefficient is noticeably smaller than unity, due to the effect of the extra U(1), for a reasonable parameter space of the model, whereas it is unity in the next-to-minimal supersymmetric standard model. Thus, these two models may be distinguished if the coupling coefficients of neutral scalar Higgs bosons to ZZZZ are measured at the future International Linear Collider by producing them via the Higgs-strahlung, ZZZZ fusion, and WWWW fusion processes.Comment: 12 pages, 2 figures, 1 table, PR

    Electroweak phase transition in the MSSM with four generations

    Full text link
    By assuming the existence of the sequential fourth generation to the minimal supersymmetric standard model (MSSM), we study the possibility of a strongly first-order electroweak phase transition. We find that there is a parameter region of the MSSM where the electroweak phase transition is strongly first order. In that parameter region, the mass of the lighter scalar Higgs boson is calculated to be above the experimental lower bound, and the scalar quarks of the third and the fourth generations are heavier than the corresponding quarks.Comment: 12 pages, 2 tables, 2 figure

    Current and noise expressions for radio-frequency single-electron transistors

    Full text link
    We derive self-consistent expressions of current and noise for single-electron transistors driven by time-dependent perturbations. We take into account effects of the electrical environment, higher-order co-tunneling, and time-dependent perturbations under the two-charged state approximation using the Schwinger-Kedysh approach combined with the generating functional technique. For a given generating functional, we derive exact expressions for tunneling currents and noises and present the forms in terms of transport coefficients. It is also shown that in the adiabatic limit our results encompass previous formulas. In order to reveal effects missing in static cases, we apply the derived results to simulate realized radio-frequency single-electron transistor. It is found that photon-assisted tunneling affects largely the performance of the single-electron transistor by enhancing both responses to gate charges and current noises. On various tunneling resistances and frequencies of microwaves, the dependence of the charge sensitivity is also discussed.Comment: 18 pages, 9 figure

    Exotic quark effects on the Higgs sector of the USSM at the LHC

    Full text link
    The Higgs sector of the U(1)-extended supersymmetric model is studied with great detail. We calculate the masses of the Higgs bosons at the one-loop level. We also calculate at the one-loop level the gluon-involving processes for the productions and decays of the scalar Higgs bosons of the model at the energy of the CERN Large Hadron Collider (LHC), where the radiative corrections due to the loops of top, bottom, and exotic quarks and their scalar partners are taken into account. We find that the exotic quark and exotic scalar quarks in the model may manifest themselves at the LHC, since the production of the heaviest scalar Higgs boson via gluon fusion processes is mediated virtually by the loops of exotic quark and exotic scalar quarks, for a reasonable parameter set of the model.Comment: 36 pages, 13 figures, JP

    Electroweak phase transition in a nonminimal supersymmetric model

    Full text link
    The Higgs potential of the minimal nonminimal supersymmetric standard model (MNMSSM) is investigated within the context of electroweak phase transition. We investigate the allowed parameter space yielding correct electroweak phase transitoin employing a high temperature approximation. We devote to phenomenological consequences for the Higgs sector of the MNMSSM for electron-positron colliders. It is observed that a future e+e−e^+ e^- linear collider with s=1000\sqrt{s} = 1000 GeV will be able to test the model with regard to electroweak baryogenesis.Comment: 28 pages, 5 tables, 12 figure

    Absorption cross section in the topologically massive gravity at the critical point

    Full text link
    The absorption cross section for the the warped AdS3_3 black hole background shows that it is larger than the area even if the s-wave limit is considered. It raises some question whether the deviation from the areal cross section is due to the warped configuration of the geometry or the rotating coordinate system, where these two effects are mixed up in the warped AdS3_3 black hole. So, we study the low-frequency scattering dynamics of propagating scalar fields under the warped AdS3_3 background at the critical point which reduces to the BTZ black hole in the rotating frame without the warped factor, which shows that the deformation effect at the critical point does not appear.Comment: 12 pages, LaTe
    • …
    corecore