309 research outputs found
Neutral Pions with Large Transverse Momentum in d+Au and Au+Au Collisions
Measurements of transverse-momentum p_T spectra of neutral pions in Au+Au and
d+Au collisions at sqrt{s_NN}=200 GeV and 62.4 GeV by the PHENIX experiment at
RHIC in comparison to p+p reference spectra at the same sqrt{s_NN} are
presented. In central Au+Au collisions at sqrt{s_NN}=200 GeV a factor 4-5
suppression for neutral pions and charged hadrons with p_T > 5 GeV/c is found
relative to the p+p reference scaled by the nuclear overlap function .
In contrast, such a suppression of high-p_T particles is absent in d+Au
collisions independent of the centrality of the collision. To study the
sqrt{s_NN} dependence of the suppression Au+Au collisions at sqrt{s_NN}=200 GeV
and 62.4 GeV are compared.Comment: 7 pages, 5 figures, presented at Hot Quarks 2004, Taos, N
Photon-assisted tunneling in a Fe8 Single-Molecule Magnet
The low temperature spin dynamics of a Fe8 Single-Molecule Magnet was studied
under circularly polarized electromagnetic radiation allowing us to establish
clearly photon-assisted tunneling. This effect, while linear at low power,
becomes highly non-linear above a relatively low power threshold. This
non-linearity is attributed to the nature of the coupling of the sample to the
thermostat.These results are of great importance if such systems are to be used
as quantum computers.Comment: 4 pages, 4 figure
Multifactorial resistance to adriamycin: relationship of DNA repair, glutathione transferase activity, drug efflux, and p-glycoprotein in cloned cell lines of adriamycin-sensitive and -resistant P388 Leukemia
Cloned lines of Adriamycin (ADR)-sensitive and -resistant P388 leukemia have been established, including P388/ADR/3 and P388/ADR/7 that are 5- and 10-fold more resistant than the cloned sensitive cell line P388/4 (Cancer Res., 46: 2978, 1986). A time course of ADR-induced DNA double-strand breaks revealed that in sensitive P388/4 cells, evidence of DNA repair was noted 4 h after removal of drug, whereas in resistant clone 3 and 7 cells repair was observed 1 h after drug removal. The earlier onset of DNA repair was statistically significant (p = 0.0154 for clone 3 cells, and p = 0.0009 for clone 7 cells). By contrast, once the repair process was initiated, the rate of repair was similar for all three cell lines. The level of glutathione transferase activity was determined in whole cell extracts. Enzyme activity (mean ± SE) in sensitive cells was 9.49 ± 1.00 nmol/min/mg protein, that in resistant clone 3 cells was 13.36 ± 1.03 nmol/min/mg, and that in clone 7 cells was 13.96 ± 1.44 nmol/min/mg; the 1.44-fold increase in enzyme activity in resistant cells was statistically significant (p = 0.01). Further evidence of induction of glutathione transferase was provided by Northern blot analysis using a 32P-labeled cDNA for an anionic glutathione transferase, which demonstrated approximately a twofold increase in mRNA in resistant clone 7 cells. Western blot analysis with a polyvalent antibody against anionic glutathione transferase also revealed a proportionate increase in gene product in resistant cells. Dose-survival studies showed that ADR-resistant cells were cross-resistant to actinomycin D, daunorubicin, mitoxantrone, colchicine, and etoposide, but not to the alkylating agent melphalan; this finding provided evidence that these cells are multidrug resistant. Using a cDNA probe for P-glycoprotein, a phenotypic marker for multidrug resistance, Northern blot analysis showed an increase in the steady state level of mRNA of approximately twofold in resistant clone 3 and 7 cells. Southern analysis with the same cDNA probe showed no evidence of gene amplification or rearrangement. Western blot analysis with monoclonal C219 antibody demonstrated a distinct increase in P-glycoprotein in resistant cells. Efflux of Adriamycin as measured by the efflux rate constant was identical in all three cell lines. Furthermore, the metabolic inhibitors azide and dinitrophenol did not augment drug uptake in either sensitive or resistant cells. These findings suggest that despite the increase in P-glycoprotein, an active extrusion pump was not operational in these cells. This and previous studies provide unequivocal evidence that resistance to Adriamycin is multifactorial. Decreased drug uptake, decreased formation of DNA single- and double-strand breaks, increased glutathione transferase activity, earlier onset of DNA repair, as well as elevated P-glycoprotein are all characteristic of multifactorial drug resistance
Self-Control in Cyberspace: Applying Dual Systems Theory to a Review of Digital Self-Control Tools
Many people struggle to control their use of digital devices. However, our
understanding of the design mechanisms that support user self-control remains
limited. In this paper, we make two contributions to HCI research in this
space: first, we analyse 367 apps and browser extensions from the Google Play,
Chrome Web, and Apple App stores to identify common core design features and
intervention strategies afforded by current tools for digital self-control.
Second, we adapt and apply an integrative dual systems model of self-regulation
as a framework for organising and evaluating the design features found. Our
analysis aims to help the design of better tools in two ways: (i) by
identifying how, through a well-established model of self-regulation, current
tools overlap and differ in how they support self-control; and (ii) by using
the model to reveal underexplored cognitive mechanisms that could aid the
design of new tools.Comment: 11.5 pages (excl. references), 6 figures, 1 tabl
Independent mechanisms of stimulation of polynucleotide kinase/phosphatase by phosphorylated and non-phosphorylated XRCC1
XRCC1 plays a central role in mammalian single-strand break repair. Although it has no enzymatic activity of its own, it stimulates the activities of polynucleotide kinase/phosphatase (PNKP), and this function is enhanced by protein kinase CK2 mediated phosphorylation of XRCC1. We have previously shown that non-phosphorylated XRCC1 stimulates the kinase activity of PNKP by increasing the turnover of PNKP. Here we extend our analysis of the XRCC1-PNKP interaction taking into account the phosphorylation of XRCC1. We demonstrate that phosphorylated and non-phosphorylated XRCC1 interact with different regions of PNKP. Phosphorylated XRCC1 binds with high affinity (Kd = 3.5 nM and 1 : 1 stoichiometry) to the forkhead associated (FHA) domain, while non-phosphorylated XRCC1 binds to the catalytic domain of PNKP with lower affinity (Kd = 43.0 nM and 1 : 1 stoichiometry). Under conditions of limited enzyme concentration both forms of XRCC1 enhance the activities of PNKP, but the effect is more pronounced with phosphorylated XRCC1, particularly for the kinase activity of PNKP. The stimulatory effect of phosphorylated XRCC1 on PNKP can be totally inhibited by the presence of excess FHA domain polypeptide, but non-phosphorylated XRCC1 is not susceptible to competition by the FHA domain. Thus, XRCC1 can stimulate PNKP by two independent mechanisms
Use of direct and iterative solvers for estimation of SNP effects in genome-wide selection
The aim of this study was to compare iterative and direct solvers for estimation of marker effects in genomic selection. One iterative and two direct methods were used: Gauss-Seidel with Residual Update, Cholesky Decomposition and Gentleman-Givens rotations. For resembling different scenarios with respect to number of markers and of genotyped animals, a simulated data set divided into 25 subsets was used. Number of markers ranged from 1,200 to 5,925 and number of animals ranged from 1,200 to 5,865. Methods were also applied to real data comprising 3081 individuals genotyped for 45181 SNPs. Results from simulated data showed that the iterative solver was substantially faster than direct methods for larger numbers of markers. Use of a direct solver may allow for computing (co)variances of SNP effects. When applied to real data, performance of the iterative method varied substantially, depending on the level of ill-conditioning of the coefficient matrix. From results with real data, Gentleman-Givens rotations would be the method of choice in this particular application as it provided an exact solution within a fairly reasonable time frame (less than two hours). It would indeed be the preferred method whenever computer resources allow its use
Taxonomic distribution and origins of the extended LHC (light-harvesting complex) antenna protein superfamily
<p>Abstract</p> <p>Background</p> <p>The extended light-harvesting complex (LHC) protein superfamily is a centerpiece of eukaryotic photosynthesis, comprising the LHC family and several families involved in photoprotection, like the LHC-like and the photosystem II subunit S (PSBS). The evolution of this complex superfamily has long remained elusive, partially due to previously missing families.</p> <p>Results</p> <p>In this study we present a meticulous search for LHC-like sequences in public genome and expressed sequence tag databases covering twelve representative photosynthetic eukaryotes from the three primary lineages of plants (Plantae): glaucophytes, red algae and green plants (Viridiplantae). By introducing a coherent classification of the different protein families based on both, hidden Markov model analyses and structural predictions, numerous new LHC-like sequences were identified and several new families were described, including the red lineage chlorophyll <it>a/b</it>-binding-like protein (RedCAP) family from red algae and diatoms. The test of alternative topologies of sequences of the highly conserved chlorophyll-binding core structure of LHC and PSBS proteins significantly supports the independent origins of LHC and PSBS families via two unrelated internal gene duplication events. This result was confirmed by the application of cluster likelihood mapping.</p> <p>Conclusions</p> <p>The independent evolution of LHC and PSBS families is supported by strong phylogenetic evidence. In addition, a possible origin of LHC and PSBS families from different homologous members of the stress-enhanced protein subfamily, a diverse and anciently paralogous group of two-helix proteins, seems likely. The new hypothesis for the evolution of the extended LHC protein superfamily proposed here is in agreement with the character evolution analysis that incorporates the distribution of families and subfamilies across taxonomic lineages. Intriguingly, stress-enhanced proteins, which are universally found in the genomes of green plants, red algae, glaucophytes and in diatoms with complex plastids, could represent an important and previously missing link in the evolution of the extended LHC protein superfamily.</p
The Sariçiçek Howardite Fall in Turkey: Source Crater of HED Meteorites on Vesta and İmpact Risk of Vestoids
The Sariçiçek howardite meteorite shower consisting of 343 documented stones
occurred on 2 September 2015 in Turkey and is the first documented howardite fall. Cosmogenic
isotopes show that Sariçiçek experienced a complex cosmic ray exposure history, exposed during
~12–14 Ma in a regolith near the surface of a parent asteroid, and that an ~1 m sized meteoroid
was launched by an impact 22 ± 2 Ma ago to Earth (as did one third of all HED meteorites). SIMS
dating of zircon and baddeleyite yielded 4550.4 ± 2.5 Ma and 4553 ± 8.8 Ma crystallization ages
for the basaltic magma clasts. The apatite U-Pb age of 4525 ± 17 Ma, K-Ar age of ~3.9 Ga, and
the U,Th-He ages of 1.8 ± 0.7 and 2.6 ± 0.3 Ga are interpreted to represent thermal metamorphic
and impact-related resetting ages, respectively. Petrographic, geochemical and O-, Cr- and Tiisotopic
studies confirm that Sariçiçek belongs to the normal clan of HED meteorites. Petrographic
observations and analysis of organic material indicate a small portion of carbonaceous chondrite
material in the Sariçiçek regolith and organic contamination of the meteorite after a few days on
soil. Video observations of the fall show an atmospheric entry at 17.3 ± 0.8 kms-1 from NW,
fragmentations at 37, 33, 31 and 27 km altitude, and provide a pre-atmospheric orbit that is the
first dynamical link between the normal HED meteorite clan and the inner Main Belt. Spectral data
indicate the similarity of Sariçiçek with the Vesta asteroid family (V-class) spectra, a group of
asteroids stretching to delivery resonances, which includes (4) Vesta. Dynamical modeling of
meteoroid delivery to Earth shows that the complete disruption of a ~1 km sized Vesta family
asteroid or a ~10 km sized impact crater on Vesta is required to provide sufficient meteoroids ≤4
m in size to account for the influx of meteorites from this HED clan. The 16.7 km diameter Antonia
impact crater on Vesta was formed on terrain of the same age as given by the 4He retention age of
Sariçiçek. Lunar scaling for crater production to crater counts of its ejecta blanket show it was
formed ~22 Ma ago
- …