80,786 research outputs found
Articulated elastic-loop roving vehicles
Prototype vehicle features exceptional obstacle-negotiating and slope-climbing capabilities plus high propulsive efficiency. Concept should interest designers of polar or ocean-bottom research vehicles. Also, its large footprint and low ground pressure will minimize ecological damage on terrain with low bearing strength, as in off-the-road application
Mechanical behavior of thermal barrier coatings for gas turbine blades
Plasma-sprayed thermal barrier coatings (TBCs) will enable turbine components to operate at higher temperatures and lower cooling gas flow rates; thereby improving their efficiency. Future developments are limited by precise knowledge of the material properties and failure mechanisms of the coating system. Details of this nature are needed for realistic modeling of the coating system which will, in turn, promote advancements in coating technology. Complementary experiments and analytical modeling which were undertaken in order to define and measure the important failure processes for plasma-sprayed coatings are presented. The experimental portion includes two different tests which were developed to measure coating properties. These are termed tensile adhesion and acoustic emission tests. The analytical modeling section details a finite element method which was used to calculate the stress distribution in the coating system. Some preliminary results are presented
Laboratory simulation of the Mars atmosphere. A feasibility study
Feasibility of simulation of Martian atmospheric processes - atmospheric transportation and deposition of dust and sand, absorption properties, and thermodynamic propertie
On-demand microwave generator of shaped single photons
We demonstrate the full functionality of a circuit that generates single
microwave photons on demand, with a wave packet that can be modulated with a
near-arbitrary shape. We achieve such a high tunability by coupling a
superconducting qubit near the end of a semi-infinite transmission line. A dc
superconducting quantum interference device shunts the line to ground and is
employed to modify the spatial dependence of the electromagnetic mode structure
in the transmission line. This control allows us to couple and decouple the
qubit from the line, shaping its emission rate on fast time scales. Our
decoupling scheme is applicable to all types of superconducting qubits and
other solid-state systems and can be generalized to multiple qubits as well as
to resonators.Comment: 10 pages, 7 figures. Published versio
Gait Verification using Knee Acceleration Signals
A novel gait recognition method for biometric applications is proposed. The approach has the following distinct features. First, gait patterns are determined via knee acceleration signals, circumventing difficulties associated with conventional vision-based gait recognition methods. Second, an automatic procedure to extract gait features from acceleration signals is developed that employs a multiple-template classification method. Consequently, the proposed approach can adjust the sensitivity and specificity of the gait recognition system with great flexibility. Experimental results from 35 subjects demonstrate the potential of the approach for successful recognition. By setting sensitivity to be 0.95 and 0.90, the resulting specificity ranges from 1 to 0.783 and 1.00 to 0.945, respectively
Controlled multibody dynamics simulation for large space structures
Multibody dynamics discipline, and dynamic simulation in control structure interaction (CSI) design are discussed. The use, capabilities, and architecture of the Large Angle Transient Dynamics (LATDYN) code as a simulation tool are explained. A generic joint body with various types of hinge connections; finite element and element coordinate systems; results of a flexible beam spin-up on a plane; mini-mast deployment; space crane and robotic slewing manipulations; a potential CSI test article; and multibody benchmark experiments are also described
- …