9,820 research outputs found

    Exchange and correlation as a functional of the local density of states

    Full text link
    A functional Exc[ρ(,˚ϵ)]E_{xc}[\rho(\r,\epsilon)] is presented, in which the exchange and correlation energy of an electron gas depends on the local density of occupied states. A simple local parametrization scheme is proposed, entirely from first principles, based on the decomposition of the exchange-correlation hole in scattering states of different relative energies. In its practical Kohn-Sham-like form, the single-electron orbitals become the independent variables, and an explicit formula for the functional derivative is obtained.Comment: 5 pages. Expanded version. Will appear in Phys. Rev.

    Properties of short-range and long-range correlation energy density functionals from electron-electron coalescence

    Full text link
    The combination of density functional theory with other approaches to the many-electron problem through the separation of the electron-electron interaction into a short-range and a long-range contribution is a promising method, which is raising more and more interest in recent years. In this work some properties of the corresponding correlation energy functionals are derived by studying the electron-electron coalescence condition for a modified (long-range-only) interaction. A general relation for the on-top (zero electron-electron distance) pair density is derived, and its usefulness is discussed with some examples. For the special case of the uniform electron gas, a simple parameterization of the on-top pair density for a long-range only interaction is presented and supported by calculations within the ``extended Overhauser model''. The results of this work can be used to build self-interaction corrected short-range correlation energy functionals.Comment: revised version, to appear in Phys. Rev.

    Electronic, vibrational and magnetic properties of a novel C_{48}N_{12} aza-fullerene

    Full text link
    We study the structural, electronic, vibrational and magnetic properties of a novel C48N12{\rm C}_{48}{\rm N}_{12} aza-fullerene using density functional theory and restricted Hartree-Fock theory. Optimized geometries and total energy of this fullerene have been calculated. We find that for C48N12{\rm C}_{48}{\rm N}_{12} the total ground state energy is about -67617 eV, the HOMO-LUMO gap is about 1.9 eV, five strong IR spectral lines are located at the vibrational frequencies, 461.5 cm1{\rm cm}^{-1}, 568.4 cm1{\rm cm}^{-1}, 579.3 cm1{\rm cm}^{-1}, 1236.1 cm1{\rm cm}^{-1}, 1338.9 cm1{\rm cm}^{-1}, the Raman scattering activities and depolarization ratios are zero, and 10 NMR spectral signals are predicted. Calculations of diamagnetic shielding factor, static dipole polarizabilities and hyperpolarizabilities of C48N12{\rm C}_{48}{\rm N}_{12} are performed and discussed.Comment: published in Chem.Phys.Let

    Edge Electron Gas

    Full text link
    The uniform electron gas, the traditional starting point for density-based many-body theories of inhomogeneous systems, is inappropriate near electronic edges. In its place we put forward the appropriate concept of the edge electron gas.Comment: 4 pages RevTex with 7 ps-figures included. Minor changes in title,text and figure

    Current-Voltage Curves for Molecular Junctions Computed Using All-Electron Basis Sets

    Full text link
    We present current-voltage (I-V) curves computed using all-electron basis sets on the conducting molecule. The all-electron results are very similar to previous results obtained using effective core potentials (ECP). A hybrid integration scheme is used that keeps the all-electron calculations cost competitive with respect to the ECP calculations. By neglecting the coupling of states to the contacts below a fixed energy cutoff, the density matrix for the core electrons can be evaluated analytically. The full density matrix is formed by adding this core contribution to the valence part that is evaluated numerically. Expanding the definition of the core in the all-electron calculations significantly reduces the computational effort and, up to biases of about 2 V, the results are very similar to those obtained using more rigorous approaches. The convergence of the I-V curves and transmission coefficients with respect to basis set is discussed. The addition of diffuse functions is critical in approaching basis set completeness

    Heart Rate Variability During Physical Exercise Is Associated With Improved Cognitive Performance in Alzheimer's Dementia Patients-A Longitudinal Feasibility Study

    Get PDF
    Heart rate variability (HRV) rapidly gains attention as an important marker of cardiovascular autonomic modulation. Moreover, there is evidence for a link between the autonomic deficit measurable by reduced HRV and the hypoactivity of the cholinergic system, which is prominently affected in Alzheimer's disease (AD). Despite the positive influence of physical exercise on cognition and its promising association with HRV, previous studies did not explore the effect of long-term physical exercise in older adults with AD. Taking advantage of a longitudinal study we analyzed the effect of a 20-week dual task training regime (3 × 15-min per week) on the vagal mediated HRV index RMSSD (root mean square of successive RR interval differences) during physical exercise and the short-term memory performance in a AD cohort (N = 14). Each training contained physical exercise on a bicycle ergometer while memorizing 30 successively presented pictures as well as the associated post-exercise picture recognition memory test. Linear-mixed modeling revealed that HRV-RMSSD significantly increased over the intervention time. Moreover, the reaction time in the picture recognition task decreased while the accuracy remained stable. Furthermore, a significantly negative relationship between increased fitness measured by HRV-RMSSD and decreased reaction time was observed. This feasibility study points to the positive effects of a dual task regime on physical and cognitive fitness in a sample with impaired cognitive performance. Beyond this, the results show that the responsiveness of parasympathetic system as measured with HRV can be improved in patients with dementia

    Rearrangement of cluster structure during fission processes

    Full text link
    Results of molecular dynamics simulations of fission reactions Na102+Na7++Na3+Na_{10}^{2+} \to Na_7^+ + Na_3^+ and Na182+2Na9+Na_{18}^{2+} \to 2 Na_9^+ are presented. Dependence of the fission barriers on isomer structure of the parent cluster is analyzed. It is demonstrated that the energy necessary for removing homothetic groups of atoms from the parent cluster is largely independent of the isomer form of the parent cluster. Importance of rearrangement of the cluster structure during the fission process is elucidated. This rearrangement may include transition to another isomer state of the parent cluster before actual separation of the daughter fragments begins and/or forming a "neck" between the separating fragments

    Long-range/short-range separation of the electron-electron interaction in density functional theory

    Full text link
    By splitting the Coulomb interaction into long-range and short-range components, we decompose the energy of a quantum electronic system into long-range and short-range contributions. We show that the long-range part of the energy can be efficiently calculated by traditional wave function methods, while the short-range part can be handled by a density functional. The analysis of this functional with respect to the range of the associated interaction reveals that, in the limit of a very short-range interaction, the short-range exchange-correlation energy can be expressed as a simple local functional of the on-top pair density and its first derivatives. This provides an explanation for the accuracy of the local density approximation (LDA) for the short-range functional. Moreover, this analysis leads also to new simple approximations for the short-range exchange and correlation energies improving the LDA.Comment: 18 pages, 14 figures, to be published in Phys. Rev.

    Spin Resolution of the Electron-Gas Correlation Energy: Positive same-spin contribution

    Full text link
    The negative correlation energy per particle of a uniform electron gas of density parameter rsr_s and spin polarization ζ\zeta is well known, but its spin resolution into up-down, up-up, and down-down contributions is not. Widely-used estimates are incorrect, and hamper the development of reliable density functionals and pair distribution functions. For the spin resolution, we present interpolations between high- and low-density limits that agree with available Quantum Monte Carlo data. In the low-density limit for ζ=0\zeta = 0, we find that the same-spin correlation energy is unexpectedly positive, and we explain why. We also estimate the up and down contributions to the kinetic energy of correlation.Comment: new version, to appear in PRB Rapid Communicatio

    Density-functional calculation of ionization energies of current-carrying atomic states

    Full text link
    Current-density-functional theory is used to calculate ionization energies of current-carrying atomic states. A perturbative approximation to full current-density-functional theory is implemented for the first time, and found to be numerically feasible. Different parametrizations for the current-dependence of the density functional are critically compared. Orbital currents in open-shell atoms turn out to produce a small shift in the ionization energies. We find that modern density functionals have reached an accuracy at which small current-related terms appearing in open-shell configurations are not negligible anymore compared to the remaining difference to experiment.Comment: 7 pages, 2 tables, accepted by Phys. Rev.
    corecore