34,570 research outputs found

    Theory of the cold collision frequency shift in 1S--2S spectroscopy of Bose-Einstein-condensed and non-condensed hydrogen

    Full text link
    We show that a correct formulation of the cold collision frequency shift for two photon spectroscopy of Bose-condensed and cold non-Bose-condensed hydrogen is consistent with experimental data. Our treatment includes transport and inhomogeneity into the theory of a non-condensed gas, which causes substantial changes in the cold collision frequency shift for the ordinary thermal gas, as a result of the very high frequency (3.9kHz) of transverse trap mode. For the condensed gas, we find substantial corrections arise from the inclusion of quasiparticles, whose number is very large because of the very low frequency (10.2Hz) of the longitudinal trap mode. These two effects together account for the apparent absence of a "factor of two" between the two possibilities. Our treatment considers only the Doppler-free measurements, but could be extended to Doppler-sensitive measurements. For Bose-condensed hydrogen, we predict a characteristic "foot" extending into higher detunings than can arise from the condensate alone, as a result of a correct treatment of the statistics of thermal quasiparticles.Comment: 16 page J Phys B format plus 6 postscript figure

    Novel Dynamical Resonances in Finite-Temperature Bose-Einstein Condensates

    Full text link
    We describe a variety of intriguing mode-coupling effects which can occur in a confined Bose-Einstein condensed system at finite temperature. These arise from strong interactions between a condensate fluctuation and resonances of the thermal cloud yielding strongly non-linear behaviour. We show how these processes can be affected by altering the aspect ratio of the trap, thereby changing the relevant mode-matching conditions. We illustrate how direct driving of the thermal cloud can lead to significant shifts in the excitation spectrum for a number of modes and provide further experimental scenarios in which the dramatic behaviour observed for the m=0m=0 mode at JILA (Jin {\it et al.} 1997) can be repeated. Our theoretical description is based on a successful second-order finite-temperature quantum field theory which includes the full coupled dynamics of the condensate and thermal cloud and all relevant finite-size effects

    Caldolysin, a highly active protease from an extremely Thermophilic Bacterium

    Get PDF
    Proteases comprise a significant proportion of those proteins which have been subject to detailed characterisation (amino acid sequence and high resolution crystallographic analysis). The extent of research interest in proteolytic enzymes reflects both their historical status, and the practical advantages of proteases as research subjects (available in quantity, extracellular etc.) widely occurring

    The industrial potential of enzymes from extremely thermophilic bacteria

    Get PDF
    The thermal regions of the central North Island of New Zealand are some of the most extensive in the world. In addition, they are readily accessible and contain a diversity of ecological habitats, including a large number at 100°C. These areas are regarded as an important tourist attraction, and as a source of geothermal power, It is now clear that they also contain an important and unique genetic resource
    corecore