162 research outputs found

    Comprehensive diagnostics of acute myeloid leukemia by whole transcriptome RNA sequencing

    Get PDF
    Acute myeloid leukemia (AML) is caused by genetic aberrations that also govern the prognosis of patients and guide risk-adapted and targeted therapy. Genetic aberrations in AML are structurally diverse and currently detected by different diagnostic assays. This study sought to establish whole transcriptome RNA sequencing as single, comprehensive, and flexible platform for AML diagnostics. We developed HAMLET (Human AML Expedited Transcriptomics) as bioinformatics pipeline for simultaneous detection of fusion genes, small variants, tandem duplications, and gene expression with all information assembled in an annotated, user-friendly output file. Whole transcriptome RNA sequencing was performed on 100 AML cases and HAMLET results were validated by reference assays and targeted resequencing. The data showed that HAMLET accurately detected all fusion genes and overexpression of EVI1 irrespective of 3q26 aberrations. In addition, small variants in 13 genes that are often mutated in AML were called with 99.2% sensitivity and 100% specificity, and tandem duplications in FLT3 and KMT2A were detected by a novel algorithm based on soft-clipped reads with 100% sensitivity and 97.1% specificity. In conclusion, HAMLET has the potential to provide accurate comprehensive diagnostic information relevant for AML classification, risk assessment and targeted therapy on a single technology platform

    The effect of nutrients on pyrrolizidine alkaloids in Senecio plants and their interactions with herbivores and pathogens

    Get PDF
    The aim of this review is to combine the knowledge of studies on effects of nutrients on pyrrolizidine alkaloids (PAs) in Senecio with those studies of effects of PAs on herbivores and pathogens in order to predict the effects that nutrients may have on herbivores and pathogens via changes in PAs. We discuss whether these predictions match with the outcome of studies where the effect of nutrients on herbivores and insects were measured. PA concentrations in S. jacobaea, S. vulgaris and S. aquaticus were mostly reduced by NPK fertilization, with genotype-specific effects occurring. Plant organs varied in their response to increased fertilization; PA concentrations in flowers remained constant, while shoot and roots were mostly negatively affected. Biomass change is probably largely responsible for the change in concentrations. Nutrients affect both the variety and the levels of PAs in the plant. The reduced PA concentrations after NPK fertilization was expected to benefit herbivores, but no or negative responses from insect herbivores were observed. Apparently other changes in the plant after fertilization are overriding the effect of PAs. Pathogens do seem to benefit from the lower PA concentrations after fertilization; they were more detrimental to fertilized plants than to unfertilized control plants. Future studies should include the effect of each element of nutrients separately and in combinations in order to gain more insight in the effect of specific nutrients on PA content in Senecio plants

    Defensive properties of pyrrolizidine alkaloids against microorganisms

    Get PDF
    The understanding of the selection factors that drive chemical diversification of secondary metabolites of constitutive defence systems in plants, such as pyrrolizidine alkaloids (PAs), is still incomplete. Historically, plants always have been confronted with microorganisms. Long before herbivores existed on this planet, plants had to cope with microbial pathogens. Therefore, plant pathogenic microorganisms may have played an important role in the early evolution of the secondary metabolite diversity. In this review, we discuss the impact that plant-produced PAs have on plant-associated microorganisms. The objective of the review is to present the current knowledge on PAs with respect to anti-microbial activities, adaptation and detoxification by microorganisms, pathogenic fungi, root protection and PA induction. Many in vitro experiments showed effects of PAs on microorganisms. These results point to the potential of microorganisms to be important for the evolution of PAs. However, only a few in vivo studies have been published and support the results of the in vitro studies. In conclusion, the topics pointed out in this review need further exploration by carrying out ecological experiments and field studies

    Thrombin Generation as a Method to Identify the Risk of Bleeding in High Clinical-Risk Patients Using Dual Antiplatelet Therapy

    Get PDF
    Background: Patients using dual antiplatelet therapy after percutaneous coronary intervention are at risk for bleeding. It is currently unknown whether thrombin generation can be used to identify patients receiving dual antiplatelet therapy with increased bleeding risk.Objectives: To investigate whether thrombin generation measurement in plasma provides additional insight into the assessment of bleeding risk for high clinical-risk patients using dual antiplatelet therapy.Methods: Coagulation factors and thrombin generation in platelet-poor plasma were measured in 93 high clinical-risk frail patients using dual antiplatelet therapy after percutaneous coronary intervention. During 12-month follow-up, clinically relevant bleedings were reported. Thrombin generation at 1 and 6 months after percutaneous coronary intervention was compared between patients with and without bleeding events.Results: One month after percutaneous coronary intervention, the parameters of thrombin generation, endogenous thrombin potential, peak height, and velocity index were significantly lower in patients with bleeding in the following months compared to patients without bleeding. At 6 months follow-up, endogenous thrombin potential, peak height, and velocity index were still (significantly) decreased in the bleeding group as compared to non-bleeders. Thrombin generation in the patients' plasma was strongly dependent on factor II, V, and VIII activity and fibrinogen.Conclusion: High clinical-risk patients using dual antiplatelet therapy with clinically relevant bleeding during follow-up show reduced and delayed thrombin generation in platelet-poor plasma, possibly due to variation in coagulation factors. Thus, impaired thrombin-generating potential may be a “second hit” on top of dual antiplatelet therapy, increasing the bleeding risk in high clinical-risk patients. Thrombin generation has the potential to improve the identification of patients using dual antiplatelet therapy at increased risk of bleeding

    Why sustainable, inclusive, and resilient investment makes for efficacious post-COVID medicine

    Get PDF
    Abstract: The global economy is facing an unprecedented challenge, with the risk of a protracted depression following the response to COVID‐19. In 2014, I argued here that macroeconomic conditions made it a relatively favorable time to kick‐start investments in a resource‐efficient, low carbon economy. Yet the opportunity was, for the most part, squandered. Failure to utilize active fiscal policy contributed to growing private indebtedness, limited productivity and wage growth and widened inequality helping erode trust in institutions. All the while, greenhouse gas emissions continued to rise. This time, there are grounds for optimism that a more coordinated response toward generating an ambitious transition to net zero emissions might contribute to a strong, sustainable, and resilient recovery. This article is categorized under: Climate Economics > Economics of Mitigatio

    Flower vs. Leaf Feeding by Pieris brassicae: Glucosinolate-Rich Flower Tissues are Preferred and Sustain Higher Growth Rate

    Get PDF
    Interactions between butterflies and caterpillars in the genus Pieris and plants in the family Brassicaceae are among the best explored in the field of insect–plant biology. However, we report here for the first time that Pieris brassicae, commonly assumed to be a typical folivore, actually prefers to feed on flowers of three Brassica nigra genotypes rather than on their leaves. First- and second-instar caterpillars were observed to feed primarily on leaves, whereas late second and early third instars migrated via the small leaves of the flower branches to the flower buds and flowers. Once flower feeding began, no further leaf feeding was observed. We investigated growth rates of caterpillars having access exclusively to either leaves of flowering plants or flowers. In addition, we analyzed glucosinolate concentrations in leaves and flowers. Late-second- and early-third-instar P. brassicae caterpillars moved upward into the inflorescences of B. nigra and fed on buds and flowers until the end of the final (fifth) instar, after which they entered into the wandering stage, leaving the plant in search of a pupation site. Flower feeding sustained a significantly higher growth rate than leaf feeding. Flowers contained levels of glucosinolates up to five times higher than those of leaves. Five glucosinolates were identified: the aliphatic sinigrin, the aromatic phenyethylglucosinolate, and three indole glucosinolates: glucobrassicin, 4-methoxyglucobrassicin, and 4-hydroxyglucobrassicin. Tissue type and genotype were the most important factors affecting levels of identified glucosinolates. Sinigrin was by far the most abundant compound in all three genotypes. Sinigrin, 4-hydroxyglucobrassicin, and phenylethylglucosinolate were present at significantly higher levels in flowers than in leaves. In response to caterpillar feeding, sinigrin levels in both leaves and flowers were significantly higher than in undamaged plants, whereas 4-hydroxyglucobrassicin leaf levels were lower. Our results show that feeding on flower tissues, containing higher concentrations of glucosinolates, provides P. brassicae with a nutritional benefit in terms of higher growth rate. This preference appears to be in contrast to published negative effects of volatile glucosinolate breakdown products on the closely related Pieris rapae

    The value of haptic feedback in conventional and robot-assisted minimal invasive surgery and virtual reality training: a current review

    Get PDF
    BACKGROUND: Virtual reality (VR) as surgical training tool has become a state-of-the-art technique in training and teaching skills for minimally invasive surgery (MIS). Although intuitively appealing, the true benefits of haptic (VR training) platforms are unknown. Many questions about haptic feedback in the different areas of surgical skills (training) need to be answered before adding costly haptic feedback in VR simulation for MIS training. This study was designed to review the current status and value of haptic feedback in conventional and robot-assisted MIS and training by using virtual reality simulation. METHODS: A systematic review of the literature was undertaken using PubMed and MEDLINE. The following search terms were used: Haptic feedback OR Haptics OR Force feedback AND/OR Minimal Invasive Surgery AND/OR Minimal Access Surgery AND/OR Robotics AND/OR Robotic Surgery AND/OR Endoscopic Surgery AND/OR Virtual Reality AND/OR Simulation OR Surgical Training/Education. RESULTS: The results were assessed according to level of evidence as reflected by the Oxford Centre of Evidence-based Medicine Levels of Evidence. CONCLUSIONS: In the current literature, no firm consensus exists on the importance of haptic feedback in performing minimally invasive surgery. Although the majority of the results show positive assessment of the benefits of force feedback, results are ambivalent and not unanimous on the subject. Benefits are least disputed when related to surgery using robotics, because there is no haptic feedback in currently used robotics. The addition of haptics is believed to reduce surgical errors resulting from a lack of it, especially in knot tying. Little research has been performed in the area of robot-assisted endoscopic surgical training, but results seem promising. Concerning VR training, results indicate that haptic feedback is important during the early phase of psychomotor skill acquisitio
    corecore