5 research outputs found

    THE EFFECT OF SOME PLANT GROWTH REGULATORS AND THEIR COMBINATION WITH METHYL JASMONATE ON ANTHOCYANIN FORMATION IN ROOTS OF KALANCHOE BLOSSFELDIANA

    Get PDF
    ABSTRACT In this study, we investigated the effect of plant growth regulators (PGRs) -auxins, gibberellin, cytokinin, abscisic acid, brassinosteroid, ethylene and their interaction with methyl jasmonate (JA-Me) applied to roots of the whole plants Kalanchoe blossfeldiana on the accumulation of anthocyanins in roots. The highest stimulation of anthocyanins synthesis was stated with application of JA-Me alone. In response to treatments with the other tested PGRs, the content of anthocyanins in roots of a whole plant was different depending on the concentration of the PGR when being applied alone or together with JA-Me. Auxin, indole-3-acetic acid (IAA) at a concentration of 50 mg路L -1 , indole-3-butyric acid (IBA) at 5 mg路L -1 and abscisic acid (ABA) at 10 mg路L -1 induced anthocyanin accumulation with approximately 60-115% compared to the control while 24-epibrassinolid (epiBL), gibberellic acid (GA3) and 6-benzylaminopurine (BAP) had no effect on the anthocyanin accumulation. The simultaneous administration of the PGRs with JA-Me usually resulted in the accumulation of anthocyanins in roots in a manner similar to that caused by JA-Me. PGRs applied to isolated roots did not stimulate anthocyanin accumulation, except for the combination of JA-Me with 50 mg路L -1 IAA. The results indicate that in K. blossfeldiana, the aboveground parts of the plant play an important role in the biosynthesis of anthocyanins in roots

    Differential effects of auxin polar transport inhibitors on rooting in some Crassulaceae species

    Get PDF
    Effects of auxin polar transport inhibitors, 2,3,5-triio-dobenzoic acid (TIBA), 1-N-naphthylphthalamic acid (NPA) and methyl 2-chloro-9-hydroxyfluorene-9-carboxylate (morphactin IT 3456), as a lanolin paste, on root formation in cuttings of some species of Crassulaceae, such as Bryophyllum daigremontianum, B. calycinum, Kalanchoe blossfeldiana and聽K. tubiflora, were studied. Cuttings of these plants were easily rooted in water without any treatment. TIBA and morphactin IT 3456 completely inhibited root formation in the cuttings of these plants but NPA did not when these inhibitors were applied around the stem below the leaves. When TIBA and morphactin were applied around the stem near the top, but leaves were present below the treatment, the root formation was observed in聽B. calycinum and K. blossfeldiana but in a smaller degree than in control cuttings. These results strongly suggest that endogenous auxin is required for root formation in cuttings of Crassulaceae plants. The differential mode of action of NPA is discussed together with its effect on auxin polar transport

    The Effect Of Some Plant Growth Regulators And Their Combination With Methyl Jasmonate On Anthocyanin Formation In Roots Of Kalanchoe Blossfeldiana

    No full text
    In this study, we investigated the effect of plant growth regulators (PGRs) - auxins, gibberellin, cytokinin, abscisic acid, brassinosteroid, ethylene and their interaction with methyl jasmonate (JA-Me) applied to roots of the whole plants Kalanchoe blossfeldiana on the accumulation of anthocyanins in roots. The highest stimulation of anthocyanins synthesis was stated with application of JA-Me alone. In response to treatments with the other tested PGRs, the content of anthocyanins in roots of a whole plant was different depending on the concentration of the PGR when being applied alone or together with JA-Me. Auxin, indole-3-acetic acid (IAA) at a concentration of 50 mg路L-1, indole-3-butyric acid (IBA) at 5 mg路L-1 and abscisic acid (ABA) at 10 mg路L-1 induced anthocyanin accumulation with approximately 60-115% compared to the control while 24-epibrassinolid (epiBL), gibberellic acid (GA3) and 6-benzylaminopurine (BAP) had no effect on the anthocyanin accumulation. The simultaneous administration of the PGRs with JA-Me usually resulted in the accumulation of anthocyanins in roots in a manner similar to that caused by JA-Me. PGRs applied to isolated roots did not stimulate anthocyanin accumulation, except for the combination of JA-Me with 50 mg路L-1 IAA

    Hormonal regulation of the growth of leaves and inflorescence stalk in Muscari armeniacum Leichtl.

    No full text
    It is known that chilling of Muscari bulbs is necessary for the growth of the inflorescence stalk and flowering, but not for the growth of leaves. Gibberellic acid (GA) accelerated stem growth and flowering in chilled Muscari bulbs. In the present experiment it was shown that in unchilled derooted Muscari bulbs the growth of leaves, but not the growth of the inflorescence stalk, was observed when bulbs were stored in water, GA at a concentration of 50 and 100 mg/L, benzyladenine (BA) at a concentration of 25 and 50 mg/L, or a mixture of GA+BA (50+25 mg/L), but abscisic acid (ABA) at a concentration of 10 mg/L greatly inhibited the growth of leaves. In chilled derooted Muscari bulbs the growth of leaves and inflorescence stalk was observed when bulbs were stored in water or GA, but BA and GA+BA treatments totally inhibited the growth of the inflorescence stalk without an effect on the growth of leaves. These results clearly showed that the growth of leaves and inflorescence stalk in Muscari bulbs are controlled by plant growth regulators in different ways. ABA totally inhibited the growth of leaves and inflorescence stalk in chilled derooted Muscari bulbs. It was shown that after the excision of the inflorescence bud in cultivated chilled Muscari bulbs, the inflorescence stalk died, but application of indole-3-acetic acid (IAA) 0.5% in the place of the removed inflorescence bud induced the growth of the inflorescence stalk. IAA applied under the inflorescence bud inhibited the development of flowers (flower-bud blasting) and induced the growth of the inflorescence stalk below the treatment site. These results are discussed with reference to hormonal regulation of stem (stalk) growth in tulip, narcissus, hyacinth, and Hippeastrum

    Effect of benzyladenine (BA) on auxin-induced stem elongation and thickening in tulip (Tulipa gesneriana L.)

    Get PDF
    It is well known that stem elongation in tulip is induced by the auxin produced in the leaves and gynoecium. Excision of the flower bud and all the leaves in an early stage of tulip growth resulted in almost total inhibition of stem growth, but the inhibition was completely recovered by the exogenous application of auxin to the place from which the flower bud had been removed. Hormonal control of stem thickening in tulip is much less known. Additional application of benzyladenine (BA) to the tulip stem by soaking a cotton wick wrapped around all the internodes only slightly inhibited stem growth induced by IAA at a concentration of 0.1 and 2.0%, but substantially stimulated the thickening of all the internodes. The treatment of the tulip stem with benzyladenine enabled direct contact of the cytokinin with the epidermis, which is an important factor in stem elongation. The experiment conducted in field conditions also showed that BA only slightly inhibited the elongation of the fourth internode induced by IAA, but stimulated the thickening of that internode. IAA applied at a concentration of 2.0% stimulated ethylene production to a much higher extent than IAA at a concentration of 0.1%, and BA affected the auxin-induced ethylene production only to a small extent. Metabolic significance of these findings is discussed
    corecore