608 research outputs found
THz-range free-electron laser ESR spectroscopy: techniques and applications in high magnetic fields
The successful use of picosecond-pulse free-electron-laser (FEL) radiation
for the continuous-wave THz-range electron spin resonance (ESR) spectroscopy
has been demonstrated. The combination of two linac-based FELs (covering the
wavelength range of 4 - 250 m) with pulsed magnetic fields up to 70 T
allows for multi-frequency ESR spectroscopy in a frequency range of 1.2 - 75
THz with a spectral resolution better than 1%. The performance of the
spectrometer is illustrated with ESR spectra obtained in the
2,2-diphenyl-1-picrylhydrazyl (DPPH) and the low-dimensional organic material
(CHN)CuCl.Comment: 9 pages, 9 figures. Rev. Sci. Instrum., accepte
Annual Report 2005 - Institute of Nuclear and Hadron Physics
Preface The Forschungszentrum Rossendorf (FZR) at Dresden is a multidisciplinary research center within the Wissenschafts-Gemeinschaft G. W. Leibniz (WGL), one of the German agencies for extra-university research. The center is active in investigations on the structure of matter as well as in the life sciences and in environmental research. The Institute of Nuclear and Hadron Physics (IKH) within the FZR avails for its research the coupling of radiation to matter in subatomic dimensions as well as to tissue, to cells, and to their components. Its research in the field of Subatomic Physics is part of the FZR-program Structure of Matter and its investigations concerning the interaction of Biostructures and Radiation contribute to the bf Life Science program of the FZR. In this field the IKH exploits possibilities for transfer and introduction of experimental and theoretical techniques from particle and nuclear physics to projects in radiobiology and biophysics. Much of this kind of interdisciplinary transfer is connected to the Radiation Source ELBE at the FZR. With its superconducting accelerator for relativistic electrons this large installation provides photons in the wide wavelength range from fm to mm - i.e. bremsstrahlung for the investigation of photonuclear processes, hard X-rays for radiobiological and other studies and infrared light for research on the structural dynamics of biomolecules. The investigation of radiation-induced processes not only dominates the projects in nuclear astrophysics as pursued at ELBE, it also is a central theme of the experimental and theoretical research performed by the IKH in close connection to the heavy ion synchrotron SIS and the upcoming FAIR facility at Darmstadt. ELBE also will deliver compact bunches of secondary neutrons and fission fragments; both offer new possibilities in laboratory studies related to the cosmic breeding of the chemical elements thus complementing the astrophysics-motivated studies with bremsstrahlung photons..
Weak continuous monitoring of a flux qubit using coplanar waveguide resonator
We study a flux qubit in a coplanar waveguide resonator by measuring
transmission through the system. In our system with the flux qubit decoupled
galvanically from the resonator, the intermediate coupling regime is achieved.
In this regime dispersive readout is possible with weak backaction on the
qubit. The detailed theoretical analysis and simulations give a good agreement
with the experimental data and allow to make the qubit characterization.Comment: 4 pages, 3 figures, to be published in Phys. Rev.
Structure of strongly coupled, multi-component plasmas
We investigate the short-range structure in strongly coupled fluidlike plasmas using the hypernetted chain approach generalized to multicomponent systems. Good agreement with numerical simulations validates this method for the parameters considered. We found a strong mutual impact on the spatial arrangement for systems with multiple ion species which is most clearly pronounced in the static structure factor. Quantum pseudopotentials were used to mimic diffraction and exchange effects in dense electron-ion systems. We demonstrate that the different kinds of pseudopotentials proposed lead to large differences in both the pair distributions and structure factors. Large discrepancies were also found in the predicted ion feature of the x-ray scattering signal, illustrating the need for comparison with full quantum calculations or experimental verification
Programming Light-Harvesting Efficiency Using DNA Origami.
The remarkable performance and quantum efficiency of biological light-harvesting complexes has prompted a multidisciplinary interest in engineering biologically inspired antenna systems as a possible route to novel solar cell technologies. Key to the effectiveness of biological "nanomachines" in light capture and energy transport is their highly ordered nanoscale architecture of photoactive molecules. Recently, DNA origami has emerged as a powerful tool for organizing multiple chromophores with base-pair accuracy and full geometric freedom. Here, we present a programmable antenna array on a DNA origami platform that enables the implementation of rationally designed antenna structures. We systematically analyze the light-harvesting efficiency with respect to number of donors and interdye distances of a ring-like antenna using ensemble and single-molecule fluorescence spectroscopy and detailed Förster modeling. This comprehensive study demonstrates exquisite and reliable structural control over multichromophoric geometries and points to DNA origami as highly versatile platform for testing design concepts in artificial light-harvesting networks.A. W. C. acknowledges support from the Winton Programme for the Physics of Sustainability.
U. F. K. was partly supported by an ERC starting grant (PassMembrane, EY 261101).
E. A.H. acknowledges support from Janggen-Pöhn Stiftung and the Schweizerischer Nationalfonds
(SNF). P. T. acknowledges support by a starting grant (SiMBA, EU 261162) of the
European Research Council (ERC). B. W. gratefully acknowledges support by the Braunschweig
International Graduate School of Metrology B-IGSM and the DFG Research Training
Group GrK1952/1 ‘Metrology for Complex Nanosystems’. P. M. thankfully acknowledges the
support of the EPSRC Centre for Doctoral Training in Sensor Technologies and Applications
EP/L015889/1.This is the final version of the article. It first appeared from ACS via https://doi.org/10.1021/acs.nanolett.5b0513
Relationships between various characterisations of wave tails
One can define several properties of wave equations that correspond to the
absence of tails in their solutions, the most common one by far being Huygens'
principle. Not all of these definitions are equivalent, although they are
sometimes assumed to be. We analyse this issue in detail for linear scalar
waves, establishing some relationships between the various properties. Huygens'
principle is almost always equivalent to the characteristic propagation
property, and in two spacetime dimensions the latter is equivalent to the
zeroth order progressing wave propagation property. Higher order progressing
waves in general do have tails, and do not seem to admit a simple physical
characterisation, but they are nevertheless useful because of their close
association with exactly solvable two-dimensional equations.Comment: Plain TeX, 26 page
The New IR FEL Facility at the Fritz-Haber-Institut in Berlin
A mid-infrared oscillator FEL has been commissioned at the Fritz-Haber-Institut. The accelerator consists of a thermionic gridded gun, a subharmonic buncher and two S-band standing-wave copper structures [1,2]. It provides a final electron energy adjustable from 15 to 50 MeV, low longitudinal (<50 keV-ps) and transverse emittance (<20 π mm-mrad), at more than 200 pC bunch charge with a micro-pulse repetition rate of 1 GHz and a macro-pulse length of up to 15 μs. Regular user operation started in Nov. 2013 with 6 user stations. Pulsed radiation with up to 100 mJ macro-pulse energy at about 0.5% FWHM bandwidth is routinely produced in the wavelength range from 4 to 48 μm. We will describe the FEL design and its performance as determined by IR power, bandwidth, and micro-pulse length measurements. Further, an overview of the new FHI FEL facility and first user results will be given. The latter include, for instance, spectroscopy of bio-molecules (peptides and small proteins) conformer selected or embedded in superfluid helium nano-droplets at 0.4 K, as well as vibrational spectroscopy of mass-selected metal-oxide clusters and protonated water clusters in the gas phase
- …