153 research outputs found

    Critical quasiparticles in single-impurity and lattice Kondo models

    Full text link
    Quantum criticality in systems of local moments interacting with itinerant electrons has become an important and diverse field of research. Here we review recent results which concern (a) quantum phase transitions in single-impurity Kondo and Anderson models and (b) quantum phase transitions in heavy-fermion lattice models which involve critical quasiparticles. For (a) the focus will be on impurity models with a pseudogapped host density of states and their applications, e.g., in graphene and other Dirac materials, while (b) is devoted to strong-coupling behavior near antiferromagnetic quantum phase transitions, with potential applications in a variety of heavy-fermion metals.Comment: 18 pages, 4 figs, mini-review. arXiv admin note: text overlap with arXiv:1208.311

    Interference of quantum critical excitations and soft diffusive modes in a disordered antiferromagnetic metal

    Full text link
    We study the temperature-dependent quantum correction to conductivity due to the interplay of spin density fluctuations and weak disorder for a two-dimensional metal near an antiferromagnetic (AFM) quantum critical point. AFM spin density fluctuations carry large momenta around the ordering vector Q\mathbf{Q} and, at lowest order of the spin-fermion coupling, only scatter electrons between "hot spots" of the Fermi surface which are connected by Q\mathbf{Q}. Earlier, it was seen that the quantum interference between AFM spin density fluctuations and soft diffusive modes of the disordered metal is suppressed, a consequence of the large-momentum scattering. The suppression of this interference results in a non-singular temperature dependence of the corresponding interaction correction to conductivity. However, at higher order of the spin-fermion coupling, electrons on the entire Fermi surface can be scattered successively by two spin density fluctuations and, in total, suffer a small momentum transfer. This higher-order process can be described by composite modes which carry small momenta. We show that the interference between formally subleading composite modes and diffusive modes generates singular interaction corrections which ultimately dominate over the non-singular first-order correction at low temperatures. We derive an effective low-energy theory from the spin-fermion model which includes the above-mentioned higher-order process implicitly and show that for weak spin-fermion coupling the small-momentum transfer is mediated by a composite propagator. Employing the conventional diagrammatic approach to impurity scattering, we find the correction δσ+ln2T\delta \sigma \sim +\ln^2 T for temperatures above an exponentially small crossover scale.Comment: 13 pages, 7 figures. Published versio
    corecore