170 research outputs found
Alternative axiomatics and complexity of deliberative STIT theories
We propose two alternatives to Xu's axiomatization of the Chellas STIT. The
first one also provides an alternative axiomatization of the deliberative STIT.
The second one starts from the idea that the historic necessity operator can be
defined as an abbreviation of operators of agency, and can thus be eliminated
from the logic of the Chellas STIT. The second axiomatization also allows us to
establish that the problem of deciding the satisfiability of a STIT formula
without temporal operators is NP-complete in the single-agent case, and is
NEXPTIME-complete in the multiagent case, both for the deliberative and the
Chellas' STIT.Comment: Submitted to the Journal of Philosophical Logic; 13 pages excluding
anne
Prostaglandin E(2) in a TLR3- and 7/8-agonist-based DC maturation cocktail generates mature, cytokine-producing, migratory DCs but impairs antigen cross-presentation to CD8(+) T cells
Mature dendritic cells (DCs) represent cellular adjuvants for optimal antigen presentation in cancer vaccines. Recently, a combination of prostaglandin E(2) (PGE(2)) with Toll-like receptor agonists (TLR-P) was proposed as a new standard to generate superior cytokine-producing DCs with high migratory capacity. Here, we compare TLR-P DCs with conventional DCs matured only with the proinflammatory cytokines TNFα and IL-1ß (CDCs), focussing on the interaction of resulting DCs with CD8(+) T-cells. TLR-P matured DCs showed elevated expression of activation markers such as CD80 and CD83 compared to CDCs, together with a significantly higher migration capacity. Secretion of IL-6, IL-8, IL-10, and IL-12 was highest after 16 h in TLR-P DCs, and only TLR-P DCs secreted active IL-12p70. TLR-P DCs as well as CDCs successfully primed multifunctional CD8(+) T-cells from naïve precursors specific for the peptide antigens Melan-A, NLGN4X, and PTP with comparable priming efficacy and T-cell receptor avidity. CD8(+) T-cells primed by TLR-P DCs showed significantly elevated expression of the integrin VLA-4 and a trend for higher T-cell numbers after expansion. In contrast, TLR-P DCs displayed a substantially reduced capability to cross-present CMVpp65 protein antigen to pp65-specific T cells, an effect that was dose-dependent on PGE(2) during DC maturation and reproducible with several responder T-cell lines. In conclusion, TLR-P matured DCs might be optimal presenters of antigens not requiring processing such as short peptides. However, PGE(2) seems less favorable for maturation of DCs intended to process and cross-present more complex vaccine antigens such as lysates, proteins or long peptides
Helical Chirality: a Link between Local Interactions and Global Topology in DNA
DNA supercoiling plays a major role in many cellular functions. The global DNA conformation is however intimately linked to local DNA-DNA interactions influencing both the physical properties and the biological functions of the supercoiled molecule. Juxtaposition of DNA double helices in ubiquitous crossover arrangements participates in multiple functions such as recombination, gene regulation and DNA packaging. However, little is currently known about how the structure and stability of direct DNA-DNA interactions influence the topological state of DNA. Here, a crystallographic analysis shows that due to the intrinsic helical chirality of DNA, crossovers of opposite handedness exhibit markedly different geometries. While right-handed crossovers are self-fitted by sequence-specific groove-backbone interaction and bridging Mg2+ sites, left-handed crossovers are juxtaposed by groove-groove interaction. Our previous calculations have shown that the different geometries result in differential stabilisation in solution, in the presence of divalent cations. The present study reveals that the various topological states of the cell are associated with different inter-segmental interactions. While the unstable left-handed crossovers are exclusively formed in negatively supercoiled DNA, stable right-handed crossovers constitute the local signature of an unusual topological state in the cell, such as the positively supercoiled or relaxed DNA. These findings not only provide a simple mechanism for locally sensing the DNA topology but also lead to the prediction that, due to their different tertiary intra-molecular interactions, supercoiled molecules of opposite signs must display markedly different physical properties. Sticky inter-segmental interactions in positively supercoiled or relaxed DNA are expected to greatly slow down the slithering dynamics of DNA. We therefore suggest that the intrinsic helical chirality of DNA may have oriented the early evolutionary choices for DNA topology
The Pace of Prostatic Intraepithelial Neoplasia Development Is Determined by the Timing of Pten Tumor Suppressor Gene Excision
Loss of the PTEN tumor suppressor is a common occurrence in human prostate cancer, particularly in advanced disease. In keeping with its role as a pivotal upstream regulator of the phosphatidylinositol 3-kinase signaling pathway, experimentally-induced deletion of Pten in the murine prostate invariably results in neoplasia. However, and unlike humans where prostate tumorigenesis likely evolves over decades, disease progression in the constitutively Pten deficient mouse prostate is relatively rapid, culminating in invasive cancer within several weeks post-puberty. Given that the prostate undergoes rapid androgen-dependent growth at puberty, and that Pten excisions during this time might be especially tumorigenic, we hypothesized that delaying prostate-specific Pten deletions until immediately after puberty might alter the pace of tumorigenesis. To this end we generated mice with a tamoxifen-inducible Cre recombinase transgene enabling temporal control over prostate-specific gene alterations. This line was then interbred with mice carrying floxed Pten alleles. Despite evidence of increased Akt/mTOR/S6K axis activity at early time points in Pten-deficient epithelial cells, excisions induced in the post-pubertal (6 wk-old) prostate yielded gradual acquisition of a range of lesions. These progressed from pre-malignant changes (nuclear atypia, focal hyperplasia) and low grade prostatic intraepithelial neoplasia (PIN) at 16–20 wks post-tamoxifen exposure, to overtly malignant lesions by ∼1 yr of age, characterized by high-grade PIN and microinvasive carcinoma. In contrast, when Pten excisions were triggered in the pre-pubertal (2 week-old) prostate, neoplasia evolved over a more abbreviated time-frame, with a spectrum of premalignant lesions, as well as overt PIN and microinvasive carcinoma by 10–12 wks post-tamoxifen exposure. These results indicate that the developmental stage at which Pten deletions are induced dictates the pace of PIN development
Natural and cryptic peptides dominate the immunopeptidome of atypical teratoid rhabdoid tumors
BACKGROUND: Atypical teratoid/rhabdoid tumors (AT/RT) are highly aggressive CNS tumors of infancy and early childhood. Hallmark is the surprisingly simple genome with inactivating mutations or deletions in the SMARCB1 gene as the oncogenic driver. Nevertheless, AT/RTs are infiltrated by immune cells and even clonally expanded T cells. However, it is unclear which epitopes T cells might recognize on AT/RT cells. METHODS: Here, we report a comprehensive mass spectrometry (MS)-based analysis of naturally presented human leukocyte antigen (HLA) class I and class II ligands on 23 AT/RTs. MS data were validated by matching with a human proteome dataset and exclusion of peptides that are part of the human benignome. Cryptic peptide ligands were identified using Peptide-PRISM. RESULTS: Comparative HLA ligandome analysis of the HLA ligandome revealed 55 class I and 139 class II tumor-exclusive peptides. No peptide originated from the SMARCB1 region. In addition, 61 HLA class I tumor-exclusive peptide sequences derived from non-canonically translated proteins. Combination of peptides from natural and cryptic class I and class II origin gave optimal representation of tumor cell compartments. Substantial overlap existed with the cryptic immunopeptidome of glioblastomas, but no concordance was found with extracranial tumors. More than 80% of AT/RT exclusive peptides were able to successfully prime CD8(+) T cells, whereas naturally occurring memory responses in AT/RT patients could only be detected for class II epitopes. Interestingly, >50% of AT/RT exclusive class II ligands were also recognized by T cells from glioblastoma patients but not from healthy donors. CONCLUSIONS: These findings highlight that AT/RTs, potentially paradigmatic for other pediatric tumors with a low mutational load, present a variety of highly immunogenic HLA class I and class II peptides from canonical as well as non-canonical protein sources. Inclusion of such cryptic peptides into therapeutic vaccines would enable an optimized mapping of the tumor cell surface, thereby reducing the likelihood of immune evasion
Novel Exon of Mammalian ADAR2 Extends Open Reading Frame
Background: The post-transcriptional processing of pre-mRNAs by RNA editing contributes significantly to the complexity of the mammalian transcriptome. RNA editing by site-selective A-to-I modification also regulates protein function through recoding of genomically specified sequences. The adenosine deaminase ADAR2 is the main enzyme responsible for recoding editing and loss of ADAR2 function in mice leads to a phenotype of epilepsy and premature death. Although A-to-I RNA editing is known to be subject to developmental and cell-type specific regulation, there is little knowledge regarding the mechanisms that regulate RNA editing in vivo. Therefore, the characterization of ADAR expression and identification of alternative ADAR variants is an important prerequisite for understanding the mechanisms for regulation of RNA editing and the causes for deregulation in disease. Methodology/Principal Findings: Here we present evidence for a new ADAR2 splice variant that extends the open reading frame of ADAR2 by 49 amino acids through the utilization of an exon located 18 kilobases upstream of the previously annotated first coding exon and driven by a candidate alternative promoter. Interestingly, the 49 amino acid extension harbors a sequence motif that is closely related to the R-domain of ADAR3 where it has been shown to function as a basic, single-stranded RNA binding domain. Quantitative expression analysis shows that expression of the novel ADAR2 splice variant is tissue specific being highest in the cerebellum
Structural Insights into Triglyceride Storage Mediated by Fat Storage-Inducing Transmembrane (FIT) Protein 2
Fat storage-Inducing Transmembrane proteins 1 & 2 (FIT1/FITM1 and FIT2/FITM2) belong to a unique family of evolutionarily conserved proteins localized to the endoplasmic reticulum that are involved in triglyceride lipid droplet formation. FIT proteins have been shown to mediate the partitioning of cellular triglyceride into lipid droplets, but not triglyceride biosynthesis. FIT proteins do not share primary sequence homology with known proteins and no structural information is available to inform on the mechanism by which FIT proteins function. Here, we present the experimentally-solved topological models for FIT1 and FIT2 using N-glycosylation site mapping and indirect immunofluorescence techniques. These methods indicate that both proteins have six-transmembrane-domains with both N- and C-termini localized to the cytosol. Utilizing this model for structure-function analysis, we identified and characterized a gain-of-function mutant of FIT2 (FLL(157-9)AAA) in transmembrane domain 4 that markedly augmented the total number and mean size of lipid droplets. Using limited-trypsin proteolysis we determined that the FLL(157-9)AAA mutant has enhanced trypsin cleavage at K86 relative to wild-type FIT2, indicating a conformational change. Taken together, these studies indicate that FIT2 is a 6 transmembrane domain-containing protein whose conformation likely regulates its activity in mediating lipid droplet formation
An Invertebrate Hyperglycemic Model for the Identification of Anti-Diabetic Drugs
The number of individuals diagnosed with type 2 diabetes mellitus, which is caused by insulin resistance and/or abnormal insulin secretion, is increasing worldwide, creating a strong demand for the development of more effective anti-diabetic drugs. However, animal-based screening for anti-diabetic compounds requires sacrifice of a large number of diabetic animals, which presents issues in terms of animal welfare. Here, we established a method for evaluating the anti-diabetic effects of compounds using an invertebrate animal, the silkworm, Bombyx mori. Sugar levels in silkworm hemolymph increased immediately after feeding silkworms a high glucose-containing diet, resulting in impaired growth. Human insulin and 5-aminoimidazole-4-carboxamide-1-β-D-ribofuranoside (AICAR), an AMP-activated protein kinase (AMPK) activator, decreased the hemolymph sugar levels of the hyperglycemic silkworms and restored growth. Treatment of the isolated fat body with human insulin in an in vitro culture system increased total sugar in the fat body and stimulated Akt phosphorylation. These responses were inhibited by wortmannin, an inhibitor of phosphoinositide 3 kinase. Moreover, AICAR stimulated AMPK phosphorylation in the silkworm fat body. Administration of aminoguanidine, a Maillard reaction inhibitor, repressed the accumulation of Maillard reaction products (advanced glycation end-products; AGEs) in the hyperglycemic silkworms and restored growth, suggesting that the growth defect of hyperglycemic silkworms is caused by AGE accumulation in the hemolymph. Furthermore, we identified galactose as a hypoglycemic compound in jiou, an herbal medicine for diabetes, by monitoring its hypoglycemic activity in hyperglycemic silkworms. These results suggest that the hyperglycemic silkworm model is useful for identifying anti-diabetic drugs that show therapeutic effects in mammals
CTLA-4 Activation of Phosphatidylinositol 3-Kinase (PI 3-K) and Protein Kinase B (PKB/AKT) Sustains T-Cell Anergy without Cell Death
The balance of T-cell proliferation, anergy and apoptosis is central to immune function. In this regard, co-receptor CTLA-4 is needed for the induction of anergy and tolerance. One central question concerns the mechanism by which CTLA-4 can induce T-cell non-responsiveness without a concurrent induction of antigen induced cell death (AICD). In this study, we show that CTLA-4 activation of the phosphatidylinositol 3-kinase (PI 3-K) and protein kinase B (PKB/AKT) sustains T-cell anergy without cell death. CTLA-4 ligation induced PI 3K activation as evidenced by the phosphorylation of PKB/AKT that in turn inactivated GSK-3. The level of activation was similar to that observed with CD28. CTLA-4 induced PI 3K and AKT activation also led to phosphorylation of the pro-apoptotic factor BAD as well as the up-regulation of BcL-XL. In keeping with this, CD3/CTLA-4 co-ligation prevented apoptosis under the same conditions where T-cell non-responsiveness was induced. This effect was PI 3K and PKB/AKT dependent since inhibition of these enzymes under conditions of anti-CD3/CTLA-4 co-ligation resulted in cell death. Our findings therefore define a mechanism by which CTLA-4 can induce anergy (and possibly peripheral tolerance) by preventing the induction of cell death
Robust computational reconstitution – a new method for the comparative analysis of gene expression in tissues and isolated cell fractions
BACKGROUND: Biological tissues consist of various cell types that differentially contribute to physiological and pathophysiological processes. Determining and analyzing cell type-specific gene expression under diverse conditions is therefore a central aim of biomedical research. The present study compares gene expression profiles in whole tissues and isolated cell fractions purified from these tissues in patients with rheumatoid arthritis and osteoarthritis. RESULTS: The expression profiles of the whole tissues were compared to computationally reconstituted expression profiles that combine the expression profiles of the isolated cell fractions (macrophages, fibroblasts, and non-adherent cells) according to their relative mRNA proportions in the tissue. The mRNA proportions were determined by trimmed robust regression using only the most robustly-expressed genes (1/3 to 1/2 of all measured genes), i.e. those showing the most similar expression in tissue and isolated cell fractions. The relative mRNA proportions were determined using several different chip evaluation methods, among which the MAS 5.0 signal algorithm appeared to be most robust. The computed mRNA proportions agreed well with the cell proportions determined by immunohistochemistry except for a minor number of outliers. Genes that were either regulated (i.e. differentially-expressed in tissue and isolated cell fractions) or robustly-expressed in all patients were identified using different test statistics. CONCLUSION: Robust Computational Reconstitution uses an intermediate number of robustly-expressed genes to estimate the relative mRNA proportions. This avoids both the exclusive dependence on the robust expression of individual, highly cell type-specific marker genes and the bias towards an equal distribution upon inclusion of all genes for computation
- …