98 research outputs found

    Randomness, Nonlocality and information in entagled correlations

    Get PDF
    It is shown that the Einstein, Podolsky and Rosen (EPR) correlations for arbitrary spin-s and the Greenberger, Horne and Zeilinger (GHZ) correlations for three particles can be described by nonlocal joint and conditional quantum probabilities. The nonlocality of these probabilities makes the Bell's inequalities void. A description that exhibits the relation between the randomness and the nonlocality of entangled correlations is introduced. Entangled EPR and GHZ correlations are studied using the Gibbs-Shannon entropy. The nonlocal character of the EPR correlations is tested using the information Bell's inequalities. Relations between the randomness, the nonlocality and the entropic information for the EPR and the GHZ correlations are established and discussed.Comment: 19 pages, REVTEX, 8 figures included in the uuencoded postscript fil

    String Entanglement and D-branes as Pure States

    Full text link
    We study the entanglement of closed strings degrees of freedom in order to investigate the microscopic structure and statistics of objects as D-branes. By considering the macroscopic pure state (MPS) limit, whenever the entanglement entropy goes to zero (in such a way that the macroscopic properties of the state are preserved), we show that boundary states may be recovered in this limit and, furthermore, the description through closed string (perturbative) degrees of freedom collapses. We also show how the thermal properties of branes and closed strings could be described by this model, and it requires that dissipative effects be taken into account. Extensions of the MPS analysis to more general systems at finite temperature are finally emphasized.Comment: 14 pages. Minor improvements. Published in Phys. Rev.

    Depolarization channels with zero-bandwidth noises

    Full text link
    A simple model describing depolarization channels with zero-bandwidth environment is presented and exactly solved. The environment is modelled by Lorentzian, telegraphic and Gaussian zero-bandwidth noises. Such channels can go beyond the standard Markov dynamics and therefore can illustrate the influence of memory effects of the noisy communication channel on the transmitted information. To quantify the disturbance of quantum states the entanglement fidelity between arbitrary input and output states is investigated.Comment: 15 pages, 3 figure

    Equivalence between two-mode spin squeezed states and pure entangled states with equal spin

    Full text link
    We prove that a pure entangled state of two subsystems with equal spin is equivalent to a two-mode spin-squeezed state under local operations except for a set of bipartite states with measure zero, and we provide a counterexample to the generalization of this result to two subsystems of unequal spin.Comment: 6 pages, no figure

    Improvement of measurement accuracy in SU(1,1) interferometers

    Get PDF
    We consider an SU(1,1) interferometer employing four-wave mixers that is fed with two-mode states which are both coherent and intelligent states of the SU(1,1) Lie group. It is shown that the phase sensitivity of the interferometer can be essentially improved by using input states with a large photon-number difference between the modes.Comment: LaTeX, 5 pages, 1 figure (compressed PostScript, available at http://www.technion.ac.il/~brif/graphics/interfer_graph/qopt.ps.gz ). More information on http://www.technion.ac.il/~brif/science.htm

    Nonclassicality of pure two-qutrit entangled states

    Full text link
    We report an exhaustive numerical analysis of violations of local realism by two qutrits in all possible pure entangled states. In Bell type experiments we allow any pairs of local unitary U(3) transformations to define the measurement bases. Surprisingly, Schmidt rank-2 states, resembling pairs of maximally entangled qubits, lead to the most noise-robust violations of local realism. The phenomenon seems to be even more pronounced for four and five dimensional systems, for which we tested a few interesting examples.Comment: 6 pages, journal versio

    Nonlocality of Two-Mode Squeezing with Internal Noise

    Full text link
    We examine the quantum states produced through parametric amplification with internal quantum noise. The internal diffusion arises by coupling both modes of light to a reservoir for the duration of the interaction time. The Wigner function for the diffused two-mode squeezed state is calculated. The nonlocality, separability, and purity of these quantum states of light are discussed. In addition, we conclude by studying the nonlocality of two other continuous variable states: the Werner state and the phase-diffused state for two light modes.Comment: 7 pages, 5 figures, submitted to PR
    corecore