6 research outputs found
Nambu-Poisson Gauge Theory
We generalize noncommutative gauge theory using Nambu-Poisson structures to obtain a new type of gauge theory with higher brackets and gauge fields. The approach is based on covariant coordinates and higher versions of the Seiberg-Witten map. We construct a covariant Nambu-Poisson gauge theory action, give its first order expansion in the Nambu-Poisson tensor and relate it to a Nambu-Poisson matrix model
Non-coboundary Poisson-Lie structures on the book group
All possible Poisson-Lie (PL) structures on the 3D real Lie group generated
by a dilation and two commuting translations are obtained. Its classification
is fully performed by relating these PL groups with the corresponding Lie
bialgebra structures on the corresponding "book" Lie algebra. By construction,
all these Poisson structures are quadratic Poisson-Hopf algebras for which the
group multiplication is a Poisson map. In contrast to the case of simple Lie
groups, it turns out that most of the PL structures on the book group are
non-coboundary ones. Moreover, from the viewpoint of Poisson dynamics, the most
interesting PL book structures are just some of these non-coboundaries, which
are explicitly analysed. In particular, we show that the two different
q-deformed Poisson versions of the sl(2,R) algebra appear as two distinguished
cases in this classification, as well as the quadratic Poisson structure that
underlies the integrability of a large class of 3D Lotka-Volterra equations.
Finally, the quantization problem for these PL groups is sketched.Comment: 15 pages, revised version, some references adde