3 research outputs found
Microstructure – Properties relationship in laser-welded AZ31B magnesium alloy
The AZ31B magnesium alloy was laser-welded at three different (1.2, 1.6, and 2 kW) laser output powers in the present work. All the butt weld joints are almost defect-free. The size of the weld joint slightly increases with increasing laser output power. The weld metal is formed by columnar grains of the alpha phase at the weld metal/base metal interface, but a finely equiaxed grain microstructure is formed in the centres of fusion zones. The minor phases are Mg17Al12 and (Al,Mg)8Mn5. The weld metal microstructure manifests clear refinement with a decrease in laser output power. Microstructural changes are reflected in changes in mechanical properties; weld joints prepared at the lowest laser output power manifest the highest microhardness, ultimate tensile strength, yield strength, and almost 90% joint efficiency. This is related to the different extents of strengthening mechanisms that act most effectively in weld joints made at 1.2 kW laser output power. Detail analysis of fracture surfaces confirmed that lower laser output power and general microstructural refinement favours the formation of plastically deformed material, which is in excellent agreement with both the experimentally determined and the calculated values of yield strength
The Effect of Process Parameters on the Microstructure and Mechanical Properties of AW5083 Aluminum Laser Weld Joints
In this article, the effect of process parameters on the microstructure and mechanical properties of AW5083 aluminum alloy weld joints welded by a disk laser were studied. Butt welds were produced using 5087 (AlMg4.5MnZr) filler wire, with a diameter of 1.2 mm, and were protected from the ambient atmosphere by a mixture of argon and 30 vol.% of helium (Aluline He30). The widest weld joint (4.69 mm) and the highest tensile strength (309 MPa) were observed when a 30 L/min shielding gas flow rate was used. Conversely, the narrowest weld joint (4.15 mm) and the lowest tensile strength (160 MPa) were found when no shielding gas was used. The lowest average microhardness (55.4 HV0.1) was recorded when a 30 L/min shielding gas flow rate was used. The highest average microhardness (63.9 HV0.1) was observed when no shielding gas was used. In addition to the intermetallic compounds, β-Al3Mg2 and γ-Al12Mg17, in the inter-dendritic areas of the fusion zone (FZ), Al49Mg32, which has an irregular shape, was recorded. The application of the filler wire, which contains zirconium, resulted in grain refinement in the fusion zone. The protected weld joint was characterized by a ductile fracture in the base material (BM). A brittle fracture of the unshielded weld joint was caused by the presence of Al2O3 particles. The research results show that we achieved the optimal welding parameters, because no cracks and pores were present in the shielded weld metal (WM)