7 research outputs found
Retrospective, Registry-based, Cohort Investigation of Clinical Outcomes in Patients with Cutaneous Squamous Cell Carcinoma and Basal Cell Carcinoma in Finland
Most cases of keratinocyte cancer can be treated effectively with surgery. However, survival is reduced in patients with advanced disease. This retrospective cohort study evaluated overall survival of patients with invasive keratinocyte cancers, and high-risk features for progression of the disease and mortality in Finnish patients in a real-world setting. A total of 43,143 patients with keratinocyte cancer types of basal cell carcinoma and 10,380 with cutaneous squamous cell carcinoma were identified nationwide. More detailed patient records were available for a subset of patients (basal cell carcinoma n = 5,020 and cutaneous squamous cell carcinoma n = 1,482) from a regional database. Fifty percent of patients with advanced cutaneous squamous cell carcinoma died approximately 4.5 years after diagnosis. Multivariable models suggested that risk factors for keratinocyte cancer progression were male sex, presence of comorbidities, immunosuppression, and pre-cancerous lesions, while risk factors for disease-specific mortality were advanced disease stage with immunosuppression, other malignancies, and consecutive surgical excisions. These results suggest that identifying patient and tumour factors associated with poor disease outcome could be important when determining appropriate treatment and follow-up; however, further studies are necessary.</p
Syntheses and catalytic properties of palladium (II) complexes of various new aryl and aryl alkyl phosphane ligands
Abstract
Thirty three aryl and aryl alkyl phosphane ligands were prepared and characterized for catalytic purposes. The aryl groups in both types of ligands were modified with alkyl substituents (methyl, ethyl, isopropyl, cyclohexyl, phenyl) or hetero substituents (methoxy, N,N-dimethylaniline, thiomethyl). The alkyl groups directly attached to the phosphorous atom were ethyl, isopropyl or cyclohexyl. Mono- and in some cases also dinuclear palladium (II) complexes of the ligands were prepared and characterized. The syntheses of the palladium complexes are solvent-dependent and afford either mono- or dinuclear complexes depending on the choice of the solvent. Additionally, two 2-mercaptobenzothiazole palladium complexes were synthesized and characterized. A rare distorted lantern-type structure was presented for the first time.
The ligands were characterized by 1H, 13C, 31P NMR spectroscopy and mass spectrometry. The palladium complexes were characterized by 31P NMR spectroscopy, X-ray crystallography and elemental analysis. Links between the NMR data of the palladium complexes and ligands and their catalytic activity was screened and correlation found. The crystal structures of the palladium complexes were studied for possible attractive interactions between two ligands. Such interactions were found from two examples. There is an attractive interaction between the phenyl and quinolinyl moieties of 2-quinolinyldiphenyl phosphane. A similar interaction was found between the methyl substitute and phenyl ring of o-tolylphosphane.
The ligands and palladium complexes presented in this thesis were prepared in hope of finding suitable catalysts for Suzuki coupling reactions of various bulky aryl halides and phenyl boronic acids to prepare sterically hindered bi- and triaryls under microwave irradiation. A selection of aryl alkyl phosphane ligands catalyzed the couplings of bulky aryl bromides and even unactivated aryl chlorides efficiently and produced high yields. The reaction conditions of a new catalyst system were optimized, and it was noticed that the addition of a small amount of water enhanced the purity and yield of the coupling products further
High strength modified nanofibrillated cellulose-polyvinyl alcohol films
In this study surface-modified nanofibrillated cellulose (NFC) was used at low levels (0.5 to1.5 wt%) as a reinforcement in a polyvinyl alcohol (PVA) matrix. The modified-NFC-PVA composite films prepared using the solution casting technique showed improved mechanical performance. Birch pulp cellulose was initially modified by allylation using a solvent-free, dry modification method followed by subsequent epoxidation of the allyl groups and finally grinding the pulp to yield epoxy-NFC. In order to obtain optimal mechanical performance, epoxy-NFC with different degrees of substitution was evaluated in the reinforcement of PVA. The addition of 1 wt% epoxy- NFC (degree of substitution, DS 0.07) enhanced the modulus, strength, and strain of pure PVA film by 307, 139 and 23 %, respectively, thus producing the best performing film. The results demonstrate the favourable effect of chemically functionalized NFC on the mechanical properties of polyvinyl alcohol compared to unmodified NFC as reinforcement. In order to improve industrial and economic feasibility, the manufacture of the composite was also done in situ by grinding cellulose directly in PVA to produce the new biocomposite in a one-step process
Solvent impact on esterification and film formation ability of nanofibrillated cellulose
In this study we have manufactured nanofibrillar cellulose and modified the fibre surface with ester groups in order to hydrophobise the surface. Nanofibrillated cellulose was chosen to demonstrate the phenomena, since due to its high surface area the effects at issue are pronounced. The prepared NFC ester derivatives were butyrate, hexanoate, benzoate, naphtoate, diphenyl acetate, stearate and palmitate. X-ray photoelectron spectroscopy, solid state NMR and contact angle measurements were used to demonstrate the chemical changes taking place on the cellulose surface. NFC ester derivatives can be prepared after a careful solvent exchange to a water-free solvent medium has been carried out. Butyl and palmitoyl esters were chosen for film forming tests due to the difference in their carbon chain lengths, and their contact angles and water vapour and oxygen permeation rates were studied. The prepared nanocellulose esters show increased hydrophobicity even at very low levels of substitution and readily form films when the films are prepared from acetone dispersions. The permeation rates suggest a potential use as barrier materials
Evidence of a causal effect of genetic tendency to gain muscle mass on uterine leiomyomata
Uterine leiomyomata (UL) are the most common tumours of the female genital tract and the primary cause of surgical removal of the uterus. Genetic factors contribute to UL susceptibility. To add understanding to the heritable genetic risk factors, we conduct a genome-wide association study (GWAS) of UL in up to 426,558 European women from FinnGen and a previous UL meta-GWAS. In addition to the 50 known UL loci, we identify 22 loci that have not been associated with UL in prior studies. UL-associated loci harbour genes enriched for development, growth, and cellular senescence. Of particular interest are the smooth muscle cell differentiation and proliferation-regulating genes functioning on the myocardin-cyclin dependent kinase inhibitor 1A pathway. Our results further suggest that genetic predisposition to increased fat-free mass may be causally related to higher UL risk, underscoring the involvement of altered muscle tissue biology in UL pathophysiology. Overall, our findings add to the understanding of the genetic pathways underlying UL, which may aid in developing novel therapeutics.Peer reviewe