5 research outputs found

    The effect of zirconia sintering temperature on flexural strength, grain size, and contrast ratio

    Full text link
    OBJECTIVE: This study investigated the effect of sintering temperatures on flexural strength, contrast ratio, and grain size of zirconia. MATERIALS AND METHODS: Zirconia specimens (Ceramill ZI, Amann Girrbach) were prepared in partially sintered state. Subsequently, the specimens were randomly divided into nine groups and sintered with different final sintering temperatures: 1,300°C, 1,350°C, 1,400°C, 1,450°C, 1,500°C, 1,550°C, 1,600°C, 1,650°C, or 1,700°C with 120 min holding time. Three-point flexural strength (N = 198; n = 22 per group) was measured according to ISO 6872: 2008. The contrast ratio (N = 90; n = 10 per group) was measured according to ISO 2471: 2008. Grain sizes and microstructure of different groups were investigated (N = 9, n = 1 per group) with scanning electron microscope. Data were analyzed using one-way ANOVA with Scheffé test and Weibull statistics (p < 0.05). Pearson correlation coefficient was calculated between either flexural strength or contrast ratio and sintering temperatures. RESULTS: The highest flexural strength was observed in groups sintered between 1,400°C and 1,550°C. The highest Weibull moduli were obtained for zirconia sintered at 1,400°C and the lowest at 1,700°C. The contrast ratio and the grain size were higher with the higher sintering temperature. The microstructure of the specimens sintered above 1,650°C exhibited defects. Sintering temperatures showed a significant negative correlation with both the flexural strength (r = -0.313, p < 0.001) and the contrast ratio values (r = -0.96, p < 0.001). CONCLUSIONS: The results of this study showed that the increase in sintering temperature increased the contrast ratio, but led to a negative impact on the flexural strength. CLINICAL RELEVANCE: Considering the flexural strength values and Weibull moduli, the sintering temperature for the zirconia tested in this study should not exceed 1,550°C

    Two-body wear of monolithic, veneered and glazed zirconia and their corresponding enamel antagonists

    Full text link
    Abstract Objective. This study tested whether the two-body wear of monolithic zirconia and their corresponding enamel antagonists was higher compared to monolithic alloy and veneered zirconia. Materials and methods. Cylindrical specimens (N = 36, n = 6) were prepared out of (A) veneered zirconia (VZ), (B) glazed zirconia using a glaze ceramic (GZC), (C) glazed zirconia using a glaze spray (GZS), (D) manually polished monolithic zirconia (MAZ), (E) mechanically polished monolithic zirconia (MEZ) and (F) monolithic base alloy (control group, MA). Wear tests were performed in a chewing simulator (49 N, 1.7 Hz, 5°C/50°C) with enamel antagonists. The wear analysis was performed using a 3D profilometer before and after 120,000, 240,000, 640,000 and 1,200,000 masticatory cycles. SEM images were used for evaluating wear qualitatively. The longitudinal results were analysed using linear mixed models (α = 0.05). Results. Materials (p < 0.001) and number of masticatory cycles (p < 0.001) had a significant effect on the wear level. The least enamel antagonist wear was observed for MAZ and MEZ (27.3 ± 15.2, 28 ± 11.1 μm, respectively). GZC (118 ± 30.9 μm) showed the highest wear of enamel antagonists. The highest wear rate in the material was observed in GZS (91.3 ± 38.6 μm). While in the groups of MA, VZ, GZC and GZS 50% of the specimens developed cracks in enamel, it was 100% in MAZ and MEZ groups. Conclusion. Polished monolithic zirconia showed lower wear rate on enamel antagonists as well as within the material itself but developed higher rates of enamel cracks

    The Zirconia Ceramic: Strengths and Weaknesses

    No full text
    corecore