17 research outputs found

    Energy Disaggregation for SMEs using Recurrence Quantification Analysis

    Get PDF
    Energy disaggregation determines the energy consumption of individual appliances from the total demand signal, which is recorded using a single monitoring device. There are varied approaches to this problem, which are applied to different settings. Here, we focus on small and medium enterprises (SMEs) and explore useful applications for energy disaggregation from the perspective of SMEs. More precisely, we use recurrence quantification analysis (RQA) of the aggregate and the individual device signals to create a two-dimensional map, which is an outlined region in a reduced information space that corresponds to ‘normal’ energy demand. Then, this map is used to monitor and control future energy consumption within the example business so to improve their energy efficiency practices. In particular, our proposed method is shown to detect when an appliance may be faulty and if an unexpected, additional device is in use

    In the mood: the dynamics of collective sentiments on Twitter

    Get PDF
    We study the relationship between the sentiment levels of Twitter users and the evolving network structure that the users created by @-mentioning each other. We use a large dataset of tweets to which we apply three sentiment scoring algorithms, including the open source Sentistrength program. Specifically we make three contributions. Firstly, we find that people who have potentially the largest communication reach (according to a dynamic centrality measure) use sentiment differently than the average user: for example, they use positive sentiment more often and negative sentiment less often. Secondly, we find that when we follow structurally stable Twitter communities over a period of months, their sentiment levels are also stable, and sudden changes in community sentiment from one day to the next can in most cases be traced to external events affecting the community. Thirdly, based on our findings, we create and calibrate a simple agent-based model that is capable of reproducing measures of emotive response comparable with those obtained from our empirical dataset

    Forecasting and Assessing Risk of Individual Electricity Peaks

    Get PDF
    Introduction The overarching aim of this open access book is to present self-contained theory and algorithms for investigation and prediction of electric demand peaks. A cross-section of popular demand forecasting algorithms from statistics, machine learning and mathematics is presented, followed by extreme value theory techniques with examples. In order to achieve carbon targets, good forecasts of peaks are essential. For instance, shifting demand or charging battery depends on correct demand predictions in time. Majority of forecasting algorithms historically were focused on average load prediction. In order to model the peaks, methods from extreme value theory are applied. This allows us to study extremes without making any assumption on the central parts of demand distribution and to predict beyond the range of available data. While applied on individual loads, the techniques described in this book can be extended naturally to substations, or to commercial settings. Extreme value theory techniques presented can be also used across other disciplines, for example for predicting heavy rainfalls, wind speed, solar radiation and extreme weather events. The book is intended for students, academics, engineers and professionals that are interested in short term load prediction, energy data analytics, battery control, demand side response and data science in general.</p

    Forecasting and Assessing Risk of Individual Electricity Peaks

    Get PDF
    The overarching aim of this open access book is to present self-contained theory and algorithms for investigation and prediction of electric demand peaks. A cross-section of popular demand forecasting algorithms from statistics, machine learning and mathematics is presented, followed by extreme value theory techniques with examples. In order to achieve carbon targets, good forecasts of peaks are essential. For instance, shifting demand or charging battery depends on correct demand predictions in time. Majority of forecasting algorithms historically were focused on average load prediction. In order to model the peaks, methods from extreme value theory are applied. This allows us to study extremes without making any assumption on the central parts of demand distribution and to predict beyond the range of available data. While applied on individual loads, the techniques described in this book can be extended naturally to substations, or to commercial settings. Extreme value theory techniques presented can be also used across other disciplines, for example for predicting heavy rainfalls, wind speed, solar radiation and extreme weather events. The book is intended for students, academics, engineers and professionals that are interested in short term load prediction, energy data analytics, battery control, demand side response and data science in general

    Long read: what is going on with economic expertise?

    Get PDF
    What is going on with economic expertise? Why is it that it is constantly depicted as simply based on opinion rather than facts, ask Marina Della Giusta, Sylvia Jaworska, Danica Vukadinovi-Greetham and Anna De Liddo? In this blog, they present their research which uses network and language analysis to explore the audience and the style of ... Continue

    An innovation diffusion model of a local electricity network that is influenced by internal and external factors

    Get PDF
    Haynes et al. (1977) derived a nonlinear differential equation to determine the spread of innovations within a social network across space and time. This model depends upon the imitators and the innovators within the social system, where the imitators respond to internal influences, whilst the innovators react to external factors. Here, this differential equation is applied to simulate the uptake of a low-carbon technology (LCT) within a real local electricity network that is situated in the UK. This network comprises of many households that are assigned to certain feeders. Firstly, travelling wave solutions of Haynes’ model are used to predict adoption times as a function of the imitation and innovation influences. Then, the grid that represents the electricity network is created so that the finite element method (FEM) can be implemented. Next, innovation diffusion is modelled with Haynes’ equation and the FEM, where varying magnitudes of the internal and external pressures are imposed. Consequently, the impact of these model parameters is investigated. Moreover, LCT adoption trajectories at fixed feeder locations are calculated, which give a macroscopic understanding of the uptake behaviour at specific network sites. Lastly, the adoption of LCTs at a household level is examined, where microscopic and macroscopic approaches are combined

    Memory and burstiness in dynamic networks

    Get PDF
    A discrete-time random process is described, which can generate bursty sequences of events. A Bernoulli process, where the probability of an event occurring at time t is given by a fixed probability x, is modified to include a memory effect where the event probability is increased proportionally to the number of events that occurred within a given amount of time preceding t. For small values of x the interevent time distribution follows a power law with exponent −2−x. We consider a dynamic network where each node forms, and breaks connections according to this process. The value of x for each node depends on the fitness distribution, \rho(x), from which it is drawn; we find exact solutions for the expectation of the degree distribution for a variety of possible fitness distributions, and for both cases where the memory effect either is, or is not present. This work can potentially lead to methods to uncover hidden fitness distributions from fast changing, temporal network data, such as online social communications and fMRI scans

    Dynamics of brand competition: Effects of unobserved social networks

    Full text link
    Brand competition is modelled using an agent based approach in order to examine the long run dynamics of market structure and brand characteristics. A repeated game is designed where myopic firms choose strategies based on beliefs about their rivals and consumers. Consumers are heterogeneous and can observe neighbour behaviour through social networks. Although firms do not observe them, the social networks have a significant impact on the emerging market structure. Presence of networks tends to polarize market share and leads to higher volatility in brands. Yet convergence in brand characteristics usually happens whenever the market reaches a steady state. Scale-free networks accentuate the polarization and volatility more than small world or random networks. Unilateral innovations are less frequent under social networks
    corecore