274 research outputs found
Endophytic hyphal compartmentalization is required for successful mycobiont-wheat interaction as revealed by confocal laser microscopy
Non-Peer ReviewedRoot endophytic fungi are seen as promising alternatives to replace chemical fertilizers and
pesticides in sustainable and organic agriculture systems. Fungal endophytes structure
formations play key roles in symbiotic intracellular association with plant-roots. To compare
the morphologies of Ascomycete endophytic fungi in wheat, we analyzed growth
morphologies during endophytic development of hyphae within the cortex of living vs dead
root cells. Confocal laser scanning microscopy (CLSM) was used to characterize fungal cell
morphology within lactofuchsin-stained roots. Cell form regularity Ireg and cell growth
direction Idir, indexes were used to quantify changes in fungal morphology. Endophyte fungi
in living roots had a variable Ireg and Idir values, low colonization abundance and patchy
colonization patterns, whereas the same endophyte species in dead (γ-irradiated) roots had
consistent form of cells and mostly grew parallel to the root axis. Knot, coil and vesicle
structures dominated in living roots, as putative symbiotic functional organs. Finally, an
increased hypha septation in living roots might indicate local specialization within
endophytic Ascomycota. Our results suggested that the applied method could be expanded to
other septate fungal symbionts
Properties of the phi meson at high temperatures and densities
We calculate the spectral density of the phi meson in a hot bath of nucleons
and pions using a general formalism relating self-energy to the forward
scattering amplitude (FSA). In order to describe the low energy FSA, we use
experimental data along with a background term. For the high energy FSA, a
Regge parameterization is employed. We verify the resulting FSA using
dispersion techniques. We find that the position of the peak of the spectral
density is slightly shifted from its vacuum position and that its width is
considerably increased. The width of the spectral density at a temperature of
150 MeV and at normal nuclear density is more than 90 MeV.Comment: 4 pages, 5 figures, Poster presented at Quark Matter 200
Acupuncture May Stimulate Anticancer Immunity via Activation of Natural Killer Cells
This article presents the hypothesis that acupuncture enhances anticancer immune functions by stimulating natural killer (NK) cells. It provides background information on acupuncture, summarizes the current scientific understanding of the mechanisms through which NK cells act to eliminate cancer cells, and reviews evidence that acupuncture is associated with increases in NK cell quantity and function in both animals and humans. The key contribution of this article involves the use of cellular immunology and molecular biological theory to interpret and synthesize evidence from disparate animal and human studies in formulating the ‘acupuncture immuno-enhancement hypothesis': clinicians may use acupuncture to promote the induction and secretion of NK-cell activating cytokines that engage specific NK cell receptors that endogenously enhance anticancer immune function
Cellular immunity induced by a recombinant adenovirus-human dendritic cell vaccine for melanoma
Background: Human Adenoviral vectors (HAdV) are immunogenic vectors which have been tested in many vaccination and gene therapy settings. Dendritic cells (DC) transduced by genetically engineered HAdV-5 (HAdV-5/DC), are investigational cancer vaccines being tested clinically. We have previously examined immune responses to HAdV-5 -encoded melanoma tumor antigens. Here, we determined whether the HAdV-5/DC also present immunogenic HAdV-5 vector-derived antigens, and characterized the cellular immune response to the viral as well as encoded melanoma tumor antigens. Methods: Both CD4+ and CD8+ HAdV-5-specific T cell responses were examined in vitro, with cells from both 8 healthy donors (HD) and 2 melanoma patients. PBMC were stimulated weekly with HAdV-5/DC and responses were examined after each stimulation. We also tested HAdV-5 neutralizing antibody levels and natural killer (NK) cell and regulatory T cell (Treg) activation and expansion in vitro. Results: HAdV-5/DC rapidly induced a high frequency of type 1 cytokine producing HAdV-5-specific CD8+ and CD4+ T cells. IFNγ and TNFα-producing T cells predominate. Those with pre-existing cellular memory to HAdV-5 had more robust responses to the HAdV-5 as well as tumor-associated antigens. NK cells are activated while Treg are only minimally and transiently expanded. Conclusions: This study demonstrates that HAdV-5/DC promote strong type I cellular immunity to viral vector-derived antigens as well as to the encoded tumor antigens. The cytokine and chemokine milieu produced by HAdV-5/DC and the activated HAdV-5-specific T cells may enhance responses to encoded tumor antigens as well. These properties make HAdV-5/DC a cancer vaccine capable of activating type 1 virus and tumor antigen-specific immunity in a cooperative way
Is it possible to formulate least action principle for dissipative systems?
A longstanding open question in classical mechanics is to formulate the least
action principle for dissipative systems. In this work, we give a general
formulation of this principle by considering a whole conservative system
including the damped moving body and its environment receiving the dissipated
energy. This composite system has the conservative Hamiltonian
where is the kinetic energy of the moving body, its potential
energy and the energy of the environment. The Lagrangian can be derived
by using the usual Legendre transformation where is the
total kinetic energy of the environment. An equivalent expression of this
Lagrangian is where is the energy dissipated by the
friction from the moving body into the environment from the beginning of the
motion. The usual variation calculus of least action leads to the correct
equation of the damped motion. We also show that this general formulation is a
natural consequence of the virtual work principle.Comment: 11 pages, no figur
Inhibition of apoptosis in human tumour cells by the tumour-associated serpin, SCC antigen-1
The squamous cell carcinoma antigen (SCC Ag) is a tumour-associated protein and a member of theserineproteaseinhibitor (serpin) family. The SCC Ag has been used as a serologic tumour marker for SCC progression, and its elevated serum levels are a risk factor for disease relapse. However, the biologic significance of this intracytoplasmic protein in cancer cells remains unknown. In this report, we demonstrated that apoptosis induced by 7-ethyl-10-hydroxycamptothecin, tumour necrosis factor-α (TNF-α) or interleukin (IL)-2-activated natural killer (NK) cells was significantly inhibited in tumour cells transduced with the SCC Ag-1 cDNA, as compared to control cells in vitro. Also, inhibition of the SCC Ag-1 expression in tumour cells by transfection of antisense SCC Ag-1 cDNA was accompanied by significantly increased sensitivity of these cells to apoptosis induced by etoposide or TNF-α. The mechanism of protection of tumour cells from apoptosis involved inhibition of caspase-3 activity and/or upstream proteases. In vivo, tumour cells overexpressing the SCC Ag-1 formed significantly larger tumours in nude mice than the SCC Ag-1-negative controls. Thus, overexpression of the SCC Ag-1, a member of the serpin family, in human cancer cells contributed to their survival by mediating protection from drug-, cytokine- or effector cell-induced apoptosis. © 2000 Cancer Research Campaig
Changes of liver-resident NK cells during liver regeneration in rats
To determine the role of NK cells in regulation of tissue growth, the phenotype and function of liver-resident NK cells were studied after 70% partial hepatectomy in rats. The process of liver regeneration was generally completed by clay 14. In contrast, the number of liver resident NK cells (NKR-P1(bright)) was restored as early as day 3 after partial hepatectomy. However, spontaneous functions of liver resident NK cells, including killing of YAC-1 and P815 targets, Ab-dependent cellular cytotoxicity, and redirected killing via NKR-P1, were continuously suppressed throughout the entire period of liver regeneration (from 3 h to 14 days). Augmentation of NK cytotoxicity against P815 targets and induction of NK cell adherence to plastic following 24 h of IL-2 stimulation showed a similar pattern of suppression. However, IL-2-induced augmentation of YAC-1 killing, proliferation and generation of adherent NK cells, and LAK activity in 5- to 7-day cultures were found to be suppressed only during the first 24 h and increased between days 2 and 7 after hepatectomy. Sorted NK cells (≥95% NKR-P1(bright)) from liver-resident mononuclear leukocytes 24 h after partial hepatectomy showed the same pattern of suppression as unsorted mononuclear leukocytes. In contrast to liver- resident NK cells, no significant changes were detected in peripheral blood or spleen NK cells of rats following partial hepatectomy. Of particular interest, in normal liver, hepatocytes were resistant to NK lysis, while resident NK cells were cytotoxic for various NK-sensitive targets. In contrast, during the early period of liver regeneration, when hepatocytes were sensitive to lysis by liver resident NK cells of normal rats, NK cells obtained from regenerating liver tissues were unable to mediate cytotoxicity. At the final phase of liver regeneration (days 7-14 after hepatectomy), both resistance of hepatocytes to killing by NK cells and cytotoxicity of liver- resident lymphocytes against hepatocytes from regenerating liver were simultaneously restored. In vivo depletion of NK cells by injection of rats with anti-NKR-P1 mAb resulted in a significant augmentation of liver regeneration subsequent to partial hepatectomy. Our data suggest that liver- resident NK cells may he involved in regulation of the extent of liver regeneration
- …