41 research outputs found

    Stratégie de grille conforme octrée intersectées pour les Applications aux calculs Aéroacoustiques de LAGOON, Modèle de train d'Atterrissage, utilisant le Flow Solver CEDRE non structuré

    Get PDF
    International audienceAircraft noise is a societal concern and landing gears contribute significantly to the generated noise in approach and landing configurations. Landing gears are characterized by their complex geometry and numerous works have been carried out to develop and validate aeroacoustics simulations to predict the associated noise. Most of them associate a time resolved flow solution, to capture the acoustic sources, to an acoustic computation, to estimate the resulting far field noise. Due to the geometric complexity, unstructured grids are required and may necessitate meticulous work to optimize. In this context, Lattice Boltzmann Methods (LBM) have become popular as they propose to combine automatic grid generation and high CPU efficiency and produced remarked results. The automatic grid generation is facilitated by the use of advanced wall models that do not require resolution of complex details of boundary layer flow, ranging from attached to detached regimes, that are produced by the complex geometries and flow environment of landing gears. Navier-Stokes (NS) solvers on the contrary rely on precise boundary layer solution that require complex grids, even in the unstructured approach, to handle the attached boundary layer regimes, that require strong grid anisotropy, as well as detached regimes and their trailing flow, that require grid isotropy. The grid construction work can therefore become a complex process. The simplification of this process is then an important challenge for industrial applications. The present work details a multi-year effort at ONERA in that direction

    Vortex shedding in segmented solid rocket motors

    No full text
    corecore