21 research outputs found
On the linear convergence of the stochastic gradient method with constant step-size
The strong growth condition (SGC) is known to be a sufficient condition for
linear convergence of the stochastic gradient method using a constant step-size
(SGM-CS). In this paper, we provide a necessary condition, for the
linear convergence of SGM-CS, that is weaker than SGC. Moreover, when this
necessary is violated up to a additive perturbation , we show that both
the projected stochastic gradient method using a constant step-size (PSGM-CS)
and the proximal stochastic gradient method exhibit linear convergence to a
noise dominated region, whose distance to the optimal solution is proportional
to
A stochastic inertial forward-backward splitting algorithm for multivariate monotone inclusions
We propose an inertial forward-backward splitting algorithm to compute the
zero of a sum of two monotone operators allowing for stochastic errors in the
computation of the operators. More precisely, we establish almost sure
convergence in real Hilbert spaces of the sequence of iterates to an optimal
solution. Then, based on this analysis, we introduce two new classes of
stochastic inertial primal-dual splitting methods for solving structured
systems of composite monotone inclusions and prove their convergence. Our
results extend to the stochastic and inertial setting various types of
structured monotone inclusion problems and corresponding algorithmic solutions.
Application to minimization problems is discussed
A first-order stochastic primal-dual algorithm with correction step
We investigate the convergence properties of a stochastic primal-dual
splitting algorithm for solving structured monotone inclusions involving the
sum of a cocoercive operator and a composite monotone operator. The proposed
method is the stochastic extension to monotone inclusions of a proximal method
studied in {\em Y. Drori, S. Sabach, and M. Teboulle, A simple algorithm for a
class of nonsmooth convex-concave saddle-point problems, 2015} and {\em I.
Loris and C. Verhoeven, On a generalization of the iterative soft-thresholding
algorithm for the case of non-separable penalty, 2011} for saddle point
problems. It consists in a forward step determined by the stochastic evaluation
of the cocoercive operator, a backward step in the dual variables involving the
resolvent of the monotone operator, and an additional forward step using the
stochastic evaluation of the cocoercive introduced in the first step. We prove
weak almost sure convergence of the iterates by showing that the primal-dual
sequence generated by the method is stochastic quasi Fej\'er-monotone with
respect to the set of zeros of the considered primal and dual inclusions.
Additional results on ergodic convergence in expectation are considered for the
special case of saddle point models
Proximity for Sums of Composite Functions
We propose an algorithm for computing the proximity operator of a sum of
composite convex functions in Hilbert spaces and investigate its asymptotic
behavior. Applications to best approximation and image recovery are described