5 research outputs found

    Phenomenology of 3-Family Grand Unified String Models

    Full text link
    In the 3-family grand unified string models constructed so far, there is only one adjoint (and no higher dimensional representation) Higgs field in the grand unified gauge group. In this preliminary analysis, we address the proton-decay problem in the 3-family E_6 and related SO(10) string models. In particular, we analyze the doublet-triplet splitting (within certain assumptions about non-perturbative dynamics). It appears that generically some fine-tuning is necessary to arrange for a pair of Higgs doublets to be light, while having color Higgs triplets superheavy. We also discuss charge-2/3 quark mass matrix that generically also seems to require some fine-tuning to have rank 1.Comment: 12 pages, Revtex 3.0. Minor corrections mad

    A Review of Three-Family Grand Unified String Models

    Get PDF
    We review the construction and classification of three-family grand unified models within the framework of asymmetric orbifolds in perturbative heterotic superstring. We give a detailed survey of all such models which is organized to aid analysis of their phenomenological properties. We compute tree-level superpotentials for these models. These superpotentials are used to analyze the issues of proton stability (doublet-triplet splitting and R-parity violating terms) and Yukawa mass matrices. To have agreement with phenomenological data all these models seem to require certain degree of fine-tuning. We also analyze the possible patterns of supersymmetry breaking in these models. We find that the supersymmetry breaking scale comes out either too high to explain the electroweak hierarchy problem, or below the electroweak scale unless some degree of fine-tuning is involved. Thus, none of the models at hand seem to be phenomenologically flawless.Comment: 49 pages, Revtex 3.0; one ps figure included. To appear in the Review section of Int.J.Mod.Phy

    Effective Action of Spontaneously Broken Gauge Theories

    Full text link
    The effective action of a Higgs theory should be gauge-invariant. However, the quantum and/or thermal contributions to the effective potential seem to be gauge-dependent, posing a problem for its physical interpretation. In this paper, we identify the source of the problem and argue that in a Higgs theory, perturbative contributions should be evaluated with the Higgs fields in the polar basis, not in the Cartesian basis. Formally, this observation can be made from the derivation of the Higgs theorem, which we provide. We show explicitly that, properly defined, the effective action for the Abelian Higgs theory is gauge invariant to all orders in perturbation expansion when evaluated in the covariant gauge in the polar basis. In particular, the effective potential is gauge invariant. We also show the equivalence between the calculations in the covariant gauge in the polar basis and the unitary gauge. These points are illustrated explicitly with the one-loop calculations of the effective action. With a field redefinition, we obtain the physical effective potential. The SU(2) non-Abelian case is also discussed.Comment: Expanded version, 32 pages, figures produced by LaTeX, plain LaTe
    corecore