32 research outputs found

    Structural and Functional Hierarchy in Photosynthetic Energy Conversion—from Molecules to Nanostructures

    Get PDF
    Basic principles of structural and functional requirements of photosynthetic energy conversion in hierarchically organized machineries are reviewed. Blueprints of photosynthesis, the energetic basis of virtually all life on Earth, can serve the basis for constructing artificial light energy-converting molecular devices. In photosynthetic organisms, the conversion of light energy into chemical energy takes places in highly organized fine-tunable systems with structural and functional hierarchy. The incident photons are absorbed by light-harvesting complexes, which funnel the excitation energy into reaction centre (RC) protein complexes containing redox-active chlorophyll molecules; the primary charge separations in the RCs are followed by vectorial transport of charges (electrons and protons) in the photosynthetic membrane. RCs possess properties that make their use in solar energy-converting and integrated optoelectronic systems feasible. Therefore, there is a large interest in many laboratories and in the industry toward their use in molecular devices. RCs have been bound to different carrier matrices, with their photophysical and photochemical activities largely retained in the nano-systems and with electronic connection to conducting surfaces. We show examples of RCs bound to carbon-based materials (functionalized and non-functionalized single- and multiwalled carbon nanotubes), transitional metal oxides (ITO) and conducting polymers and porous silicon and characterize their photochemical activities. Recently, we adapted several physical and chemical methods for binding RCs to different nanomaterials. It is generally found that the P(+)(Q(A)Q(B))(−) charge pair, which is formed after single saturating light excitation is stabilized after the attachment of the RCs to the nanostructures, which is followed by slow reorganization of the protein structure. Measuring the electric conductivity in a direct contact mode or in electrochemical cell indicates that there is an electronic interaction between the protein and the inorganic carrier matrices. This can be a basis of sensing element of bio-hybrid device for biosensor and/or optoelectronic applications

    The new joint Australian and New Zealand design standard for steel and composite bridges AS/NZS 5100.6 - Part 6 : Steel and composite construction

    Get PDF
    This paper presents some of the innovations that are included within the new Bridge Design Standard for Steel and Composite Construction AS/NZS 5100.6, which will be the first harmonized standard between Australia and New Zealand for the design of bridges. As Chairs of the Committees responsible for AS/NZS 5100.6 and AS/NZS 2327, the authors of this paper present the challenges faced from the introduction concrete compressive strengths up to 100 MPa and quenched and tempered steels with a yield strength up to 690 MPa. Perhaps one of the most innovative aspects of this standard is the introduction of an appendix that provides design rules for steel products that are not manufactured to Australia and New Zealand standards. This appendix is underpinned by rigorous structural reliability analyses undertaken by Australian and New Zealand researchers, which included the present authors of this paper
    corecore