2 research outputs found

    Category-length and category-strength effects using images of scenes

    Get PDF
    Global matching models have provided an important theoretical framework for recognition memory. Key predictions of this class of models are that (1) increasing the number of occurrences in a study list of some items affects the performance on other items (list-strength effect) and that (2) adding new items results in a deterioration of performance on the other items (list-length effect). Experimental confirmation of these predictions has been difficult, and the results have been inconsistent. A review of the existing literature, however, suggests that robust length and strength effects do occur when sufficiently similar hard-to-label items are used. In an effort to investigate this further, we had participants study lists containing one or more members of visual scene categories (bathrooms, beaches, etc.). Experiments 1 and 2 replicated and extended previous findings showing that the study of additional category members decreased accuracy, providing confirmation of the category-length effect. Experiment 3 showed that repeating some category members decreased the accuracy of nonrepeated members, providing evidence for a category-strength effect. Experiment 4 eliminated a potential challenge to these results. Taken together, these findings provide robust support for global matching models of recognition memory. The overall list lengths, the category sizes, and the number of repetitions used demonstrated that scene categories are well-suited to testing the fundamental assumptions of global matching models. These include (A) interference from memories for similar items and contexts, (B) nondestructive interference, and (C) that conjunctive information is made available through a matching operation

    The role of frontoparietal cortex across the functional stages of visual search

    Get PDF
    Areas in frontoparietal cortex have been shown to be active in a range of cognitive tasks and have been proposed to play a key role in goal-driven activities (Dosenbach, N. U. F., Fair, D. A., Miezin, F. M., Cohen, A. L., Wenger, K. K., Dosenbach, R. A. T., et al. Distinct brain networks for adaptive and stable task control in humans. , , 11073-11078, 2007; Duncan, J. The multiple-demand (MD) system of the primate brain: Mental programs for intelligent behavior. , , 172-179, 2010). Here, we examine the role this frontoparietal system plays in visual search. Visual search, like many complex tasks, consists of a sequence of operations: target selection, stimulus-response (SR) mapping, and response execution. We independently manipulated the difficulty of target selection and SR mapping in a novel visual search task that involved identical stimulus displays. Enhanced activity was observed in areas of frontal and parietal cortex during both difficult target selection and SR mapping. In addition, anterior insula and ACC showed preferential representation of SR-stage information, whereas the medial frontal gyrus, precuneus, and inferior parietal sulcus showed preferential representation of target selection-stage information. A connectivity analysis revealed dissociable neural circuits underlying visual search. We hypothesize that these circuits regulate distinct mental operations associated with the allocation of spatial attention, stimulus decisions, shifts of task set from selection to SR mapping, and SR mapping. Taken together, the results show frontoparietal involvement in all stages of visual search and a specialization with respect to cognitive operations
    corecore