44 research outputs found

    The Current Testing Protocols for Biomechanical Evaluation of Lumbar Spinal Implants in Laboratory Setting: A Review of the Literature

    Get PDF
    In vitro biomechanical investigations have become a routinely employed technique to explore new lumbar instrumentation. One of the most important advantages of such investigations is the low risk present when compared to clinical trials. However, the best use of any experimental data can be made when standard testing protocols are adopted by investigators, thus allowing comparisons among studies. Experimental variables, such as the length of the specimen, operative level, type of loading (e.g., dynamic versus quasistatic), magnitude, and rate of load applied, are among the most common variables controlled during spinal biomechanical testing. Although important efforts have been made to standardize these protocols, high variability can be found in the current literature. The aim of this investigation was to conduct a systematic review of the literature to identify the current trends in the protocols reported for the evaluation of new lumbar spinal implants under laboratory setting

    Effect of graded posterior element and ligament removal on annulus stress and segmental stability in lumbar spine stenosis: a finite element analysis study

    Get PDF
    The study aimed to investigate the impact of posterior element and ligament removal on the maximum von Mises stress, and maximum shear stress of the eight-layer annulus for treating stenosis at the L3-L4 and L4-L5 levels in the lumbar spine. Previous studies have indicated that laminectomy alone can result in segmental instability unless fusion is performed. However, no direct correlations have been established regarding the impact of posterior and ligament removal. To address this gap, four models were developed: Model 1 represented the intact L2-L5 model, while model 2 involved a unilateral laminotomy involving the removal of a section of the L4 inferior lamina and 50% of the ligament flavum between L4 and L5. Model 3 consisted of a complete laminectomy, which included the removal of the spinous process and lamina of L4, as well as the relevant connecting ligaments between L3-L4 and L4-L5 (ligament flavum, interspinous ligament, supraspinous ligament). In the fourth model, a complete laminectomy with 50% facetectomy was conducted. This involved the same removals as in model 3, along with a 50% removal of the inferior/superior facets of L4 and a 50% removal of the facet capsular ligaments between L3-L4 and L4-L5. The results indicated a significant change in the range of motion (ROM) at the L3-L4 and L4-L5 levels during flexion and torque situations, but no significant change during extension and bending simulation. The ROM increased by 10% from model 1 and 2 to model 3, and by 20% to model 4 during flexion simulation. The maximum shear stress and maximum von-Mises stress of the annulus and nucleus at the L3-L4 levels exhibited the greatest increase during flexion. In all eight layers of the annulus, there was an observed increase in both the maximum shear stress and maximum von-Mises stress from model 1&2 to model 3 and model 4, with the highest rate of increase noted in layers 7&8. These findings suggest that graded posterior element and ligament removal have a notable impact on stress distribution and range of motion in the lumbar spine, particularly during flexion

    Upregulation of the Oct3/4 network in basal breast cancer is associated with its metastatic potential and shows tissue dependent variability

    Get PDF
    Adaptive plasticity of Breast Cancer stem cells (BCSCs) is strongly correlated with cancer progression and resistance, leading to a poor prognosis. In this study, we report the expression profile of several pioneer transcription factors of th

    Chordomas and Chondrosarcomas of the Skull Base and Spine.

    No full text

    Letter to the Editor: Syringomyelia

    No full text

    Cancer in the Spine: Comprehensive Care

    No full text

    Controversial Issues in Kyphoplasty and Vertebroplasty in Osteoporotic Vertebral Fractures

    No full text
    Kyphoplasty (KP) and vertebroplasty (VP) have been successfully employed for many years for the treatment of osteoporotic vertebral fractures. The purpose of this review is to resolve the controversial issues raised by the two randomized trials that claimed no difference between VP and SHAM procedure. In particular we compare nonsurgical management (NSM) and KP and VP, in terms of clinical parameters (pain, disability, quality of life, and new fractures), cost-effectiveness, radiological variables (kyphosis correction and vertebral height restoration), and VP versus KP for cement extravasation and complications profile. Cement types and optimal filling are analyzed and technological innovations are presented. Finally unipedicular/bipedicular techniques are compared. Conclusion. VP and KP are superior to NSM in clinical and radiological parameters and probably more cost-effective. KP is superior to VP in sagittal balance improvement and cement leaking. Complications are rare but serious adverse events have been described, so caution should be exerted. Unilateral procedures should be pursued whenever feasible. Upcoming randomized trials (CEEP, OSTEO-6, STIC-2, and VERTOS IV) will provide the missing link

    Expandable intervertebral cage

    Get PDF
    A method and system for performing bone fusion and/or securing one or more bones, such as adjacent vertebra, are disclosed

    Expandable intervertebral cage

    No full text
    A method and system for performing bone fusion and/or securing one or more bones, such as adjacent vertebra, are disclosed
    corecore