51 research outputs found

    Introduction. Extent, processes and evolutionary impact of interspecific hybridization in animals

    Get PDF
    Since the time of Charles Darwin, studies of interspecific hybridization have been a major focus for evolutionary biologists. Although this phenomenon has often been viewed as problematic in the fields of ecology, taxonomy and systematics, it has become a primary source of data for studies on speciation and adaptation. Effects from genetic/evolutionary processes, such as recombination and natural selection, usually develop over extended periods of time; however, they are accelerated in cases of hybridization. Interspecific hybrids exhibit novel genomes that are exposed to natural selection, thus providing a key to unravel the ultimate causes of adaptation and speciation. Here we provide firstly a historic perspective of hybridization research, secondly a novel attempt to assess the extent of hybridization among animals and thirdly an overview of the reviews and case studies presented in this theme issue

    Evolutionary genetics and ecology of sperm-dependent parthenogenesis

    No full text
    Sperm-dependent (or pseudogamous) forms of parthenogenetic reproduction occur in a wide variety of animals. Inheritance is typically clonal and matroclinous (of female descent), but sperm are needed to initiate normal development. As opposed to true parthenogenesis (i.e., sperm-independent reproduction), pseudogamous parthenogenetic lineages must coexist with a ‘sperm donor’ — e.g., males from a conspecific sexual lineage, conspecific hermaphrodites, or males from a closely related sexual species. Such sperm donors do not contribute genetically to the next generation. The parasitic nature of sperm-dependent parthenogenesis raises numerous ecological and evolutionary questions. How do they arise? What factors help stabilize coexistence between the pseudogamous parthenogens and their sperm donors (i.e., ‘sexual hosts’)? Why do males waste sperm on the asexual females? Why does true parthenogenesis not evolve in pseudogamous lineages and free them from their dependency on sperm donors? Does pseudogamous parthenogenesis provide compensatory benefits that outweigh the constraints of sperm-dependence? Herein, we consider some genetic, ecological, and geographical consequences of sperm-dependent parthenogenesis in animals.

    Evolution and biogeography of deep-sea vent and seep invertebrates

    No full text
    Deep-sea hydrothermal vents and cold seeps are submarine springs where nutrient-rich fluids emanate from the sea floor. Vent and seep ecosystems occur in a variety of geological settings throughout the global ocean and support food webs based on chemoautotrophic primary production. Most vent and seep invertebrates arrive at suitable habitats as larvae dispersed by deep-ocean currents. The recent evolution of many vent and seep invertebrate species (<100 million years ago) suggests that Cenozoic tectonic history and oceanic circulation patterns have been important in defining contemporary biogeographic patterns
    corecore