8 research outputs found
Draft Genome Sequences of Staphylococcus sp. Strain CWZ226, of Unknown Origin, and Pseudomonas sp. Strain CVAP#3, Antagonistic to Strain CWZ226
Many Staphylococcus and Pseudomonas species, such as Staphylococcus aureus and Pseudomonas aeruginosa, are opportunistic human pathogens. However, Pseudomonas species are also known to produce bioactive compounds. Here, we report on the genome sequences of a Pseudomonas isolate and a Staphylococcus species of unknown origin that it inhibits
Desiccation Responses and Survival of \u3ci\u3eSinorhizobium meliloti\u3c/i\u3e USDA 1021 in Relation to Growth Phase, Temperature, Chloride and Sulfate Availability
Aims: To identify physical and physiological conditions that affect the survival of Sinorhizobium meliloti USDA 1021 during desiccation. Methods and Results: An assay was developed to study desiccation response of S. meliloti USDA 1021 over a range of environmental conditions. We determined the survival during desiccation in relation to (i) matrices and media, (ii) growth phase, (iii) temperature, and (iv) chloride and sulfate availability. Conclusions: This study indicates that survival of S. meliloti USDA 1021 during desiccation is enhanced: (i) when cells were dried in the stationary phase, (ii) with increasing drying temperature at an optimum of 37°C, and (iii) during an increase of chloride and sulfate, but not sodium or potassium availability. In addition, we resolved that the best matrix to test survival was nitrocellulose filters. Significance and Impact of the Study: The identification of physical and physiological factors that determine the survival during desiccation of S. meliloti USDA 1021 may aid in (i) the strategic development of improved seed inocula, (ii) the isolation, and (iii) the development of rhizobial strains with improved ability to survive desiccation. Furthermore, this work may provide insights into the survival of rhizobia under drought conditions. © 2006 The Society for Applied Microbiology
Desiccation Induces Viable but Non-Culturable Cells in \u3ci\u3eSinorhizobium meliloti\u3c/i\u3e 1021
Sinorhizobium meliloti is a microorganism commercially used in the production of e.g. Medicago sativa seed inocula. Many inocula are powder-based and production includes a drying step. Although S. meliloti survives drying well, the quality of the inocula is reduced during this process. In this study we determined survival during desiccation of the commercial strains 102F84 and 102F85 as well as the model strain USDA1021.
The survival of S. meliloti 1021 was estimated during nine weeks at 22% relative humidity. We found that after an initial rapid decline of colony forming units, the decline slowed to a steady 10-fold reduction in colony forming units every 22 days. In spite of the reduction in colony forming units, the fraction of the population identified as viable (42-54%) based on the Baclight live/dead stain did not change significantly over time. This change in the ability of viable cells to form colonies shows (i) an underestimation of the survival of rhizobial cells using plating methods, and that (ii) in a part of the population desiccation induces a Viable But Non Culturable (VBNC)-like state, which has not been reported before. Resuscitation attempts did not lead to a higher recovery of colony forming units indicating the VBNC state is stable under the conditions tested. This observation has important consequences for the use of rhizobia. Finding methods to resuscitate this fraction may increase the quality of powder-based seed inocula
Identification and Characterization of a NaCl responsive Genetic Locus Involved in 2 Survival During Desiccation in \u3ci\u3eSinorhizobium meliloti\u3c/i\u3e
The Rhizobiaceae are a bacterial family of enormous agricultural importance due to the ability of its members to fix atmospheric nitrogen in an intimate relationship with plants. Their survival as naturally occurring soil bacteria in agricultural soils as well as popular seed inocula is affected directly by drought and salinity. Survival after desiccation in the presence of NaCl is enabled by underlying genetic mechanisms in the model organism Sinorhizobium meliloti 1021. Since salt stress parallels a loss in water activity, the identification of NaCl-responsive loci may identify loci involved in survival during desiccation. This approach enabled identification of the loci asnO and ngg by their reduced ability to grow on increased NaCl concentrations, likely due to their inability to produce the osmoprotectant N-acetylglutaminylglutamine (NAGGN). In addition, the mutant harboring ngg::Tn5luxAB was affected in its ability to survive desiccation and responded to osmotic stress. The desiccation sensitivity may have been due to secondary functions of Ngg (N-acetylglutaminylglutamine synthetase)-like cell wall metabolism as suggested by the presence of a d-alanine-d-alanine ligase (dAla-dAla) domain and by sensitivity of the mutant to β-lactam antibiotics. asnO::Tn5luxAB is expressed during the stationary phase under normal growth conditions. Amino acid sequence similarity to enzymes producing β-lactam inhibitors and increased resistance to β-lactam antibiotics may indicate that asnO is involved in the production of a β-lactam inhibitor
A New Genetic Locus in \u3ci\u3eSinorhizobium meliloti\u3c/i\u3e is Involved in Stachydrine Utilization
Stachydrine, a betaine released by germinating alfalfa seeds, functions as an inducer of nodulation genes, a catabolite, and an osmoprotectant in Sinorhizobium meliloti. Two stachydrine-inducible genes were found in S. meliloti 1021 by mutation with a Tn5-luxAB promoter probe. Both mutant strains (S10 and S11) formed effective alfalfa root nodules, but neither grew on stachydrine as the sole carbon and nitrogen source. When grown in the absence or presence of salt stress, S10 and S11 took up [14C]stachydrine as well as wild-type cells did, but neither used stachydrine effectively as an osmoprotectant. In the absence of salt stress, both S10 and S11 took up less [14C]proline than wild-type cells did. S10 and S11 appeared to colonize alfalfa roots normally in single-strain tests, but when mixed with the wild- type strain, their rhizosphere counts were reduced more than 50% (P ≤ 0.01) relative to the wild type. These results suggest that stachydrine catabolism contributes to root colonization. DNA sequence analysis identified the mutated locus in S11 as putA, and the luxAB fusion in that gene was induced by proline as well as stachydrine. DNA that restored the capacity of mutant S10 to catabolize stachydrine contained a new open reading frame, stcD. All data are consistent with the concept that stcD codes for an enzyme that produces proline by demethylation of N-methylproline, a degradation product of stachydrine