635 research outputs found

    Strain modification in coherent Ge and SixGe1–x epitaxial films by ion-assisted molecular beam epitaxy

    Get PDF
    We have observed large changes in Ge and SixGe1–x layer strain during concurrent molecular beam epitaxial growth and low-energy bombardment. Layers are uniformly strained, coherent with the substrate, and contain no dislocations, suggesting that misfit strain is accommodated by free volume changes associated with injection of ion bombardment induced point defects. The dependence of layer strain on ion energy, ion-atom flux ratio, and temperature is consistent with the presence of a uniform dispersion of point defects at high concentration. Implications for distinguishing ion-surface interactions from ion-bulk interactions are discussed

    Dynamical x-ray diffraction from nonuniform crystalline films: Application to x-ray rocking curve analysis

    Get PDF
    A dynamical model for the general case of Bragg x-ray diffraction from arbitrarily thick nonuniform crystalline films is presented. The model incorporates depth-dependent strain and a spherically symmetric Gaussian distribution of randomly displaced atoms and can be applied to the rocking curve analysis of ion-damaged single crystals and strained layer superlattices. The analysis of x-ray rocking curves using this model provides detailed strain and damage depth distributions for ion-implanted or MeV-ion-bombarded crystals and layer thickness, and lattice strain distributions for epitaxial layers and superlattices. The computation time using the dynamical model is comparable to that using a kinematical model. We also present detailed strain and damage depth distributions in MeV-ion-bombarded GaAs(100) crystals. The perpendicular strain at the sample surface, measured as a function of ion-beam dose (D), nuclear stopping power (Sn), and electronic stopping power (Se) is shown to vary according to (1–kSe)DSn and saturate at high doses

    Shock wave initiation of the Ti5Si3 reaction in elemental powders

    Get PDF
    Elemental powder mixes were subjected to plane wave shock processing which reduced the initial porosity to essentially zero. Two powder mixes in a 5:3 Ti:Si atomic ratio were used: -325 mesh Ti and Si (<45 mu m), and -100 mesh Ti and Si (<150 mu m) with shock pressures up to 7.3 GPa and shock energies up to 671 J/g. Shock pressures were calculated using hugoniot parameters for porous elemental powder mixtures and shock energies were taken to be the work done by the shock (P Delta V/2). Shock energy thresholds for complete reaction of the elemental powders were found which depend upon powder particle size and the initial porosity of the powder. The threshold energy for the larger powder mix was found to be similar to 8O% larger than that for the smaller powder. A decrease in initial porosity from 0.49 to 0.40 caused an increase in threshold shock energy of about 75% for both powders. At shock energies slightly below the threshold energy, evidence for the reaction of solid Ti and liquid Si was observed in small isolated regions. These regions contained spherical micronodules with the composition of TiSi2 in Si. The results are compared to those of previous studies reported in the literature, and mechanisms for reaction initiation and the observed threshold values are proposed

    Mobility of Dislocations in Aluminum

    Get PDF
    The velocities of individual dislocations of edge and mixed types in pure aluminum single crystals were determined as a function of applied‐resolved shear stress and temperature. The dislocation velocities were determined from measurements of the displacements of individual dislocations produced by stress pulses of known duration. The Berg‐Barrett x‐ray technique was employed to observe the dislocations, and stress pulses of 15 to 108 ÎŒsec duration were applied by propagating torsional waves along the axes of [111]‐oriented cylindrical crystals. Resolved shear stresses up to 16×10^6 dynes∕cm^2 were applied at temperatures ranging from −150° to +70°C, and dislocation velocities were found to vary from 10 to 2800 cm∕sec over these ranges of stress and temperature. The experimental conditions were such that the dislocation velocities were not significantly influenced by impurities, dislocation curvature, dislocation‐dislocation interactions, or long‐range internal stress fields in the crystals. The velocity of dislocations is found to be linearly proportional to the applied‐resolved shear stress, and to decrease with increasing temperature. Qualitative comparison of these results with existing theories leads to the conclusion that the mobility of individual dislocations in pure aluminum is governed by dislocation‐phonon interactions. The phonon‐viscosity theory of dislocation mobility can be brought into agreement with the experimental results by reasonable choices of the values of certain constants appearing in the theory

    Self-consistent determination of the perpendicular strain profile of implanted Si by analysis of x-ray rocking curves

    Get PDF
    Results of a determination of strain perpendicular to the surface and of the damage in (100) Si single crystals irradiated by 250-keV Ar+ ions at 77 K are presented. Double-crystal x-ray diffraction and dynamical x-ray diffraction theory are used. Trial strain and damage distributions were guided by transmission electron microscope observations and Monte Carlo simulation of ion energy deposition. The perpendicular strain and damage profiles, determined after sequentially removing thin layers of Ar+-implanted Si, were shown to be self-consistent, proving the uniqueness of the deconvolution. Agreement between calculated and experimental rocking curves is obtained with strain and damage distributions which closely follow the shape of the trim simulations from the maximum damage to the end of the ion range but fall off more rapidly than the simulation curve near the surface. Comparison of the trim simulation and the strain profile of Ar+-implanted Si reveals the importance of annealing during and after implantation and the role of complex defects in the final residual strain distribution

    Strain in epitaxial CoSi2 films on Si (111) and inference for pseudomorphic growth

    Get PDF
    The perpendicular x-ray strain of epitaxial CoSi2 films grown on Si(111) substrates at ~600 °C was measured at temperatures from 24 up to 650 °C. At 600 °C, the perpendicular x-ray strain is –0.86%, which is about the x-ray strain that a stress-free CoSi2 film on Si(111) would have at that temperature. This result shows that the stress in the epitaxial CoSi2 film is fully relaxed at the growth temperature. Strains in the film below the growth temperature are induced by the difference in the thermal expansion coefficient of CoSi2 and Si, alphaf–alphas=0.65×10^–5/°C. Within experimental error margins, the strain increases linearly with decreasing temperature at a rate of (1.3±0.1)×10^–5/C. The slope of the strain-temperature dependence, obtained by assuming that the density of misfit dislocations formed at the growth temperature remains unchanged, agrees with the measured slope if the unknown Poisson ratio of CoSi2 is assumed to be nuf=1/3. These observations support three rules postulated for epitaxial growth

    Several Techniques for One-Dimensional Strain Shock Consolidation of Multiple Samples

    Get PDF
    We explored three methods of shock wave powder consolidation which retain the one-dimensional nature of a plane shock wave and allow multiple samples to be consolidated. The first technique uses a porous sintered metal cylinder as a shock fixture. The sintered material is chosen to match as closely as possible the solid density and compressibility of the powder to be investigated. The second method does not require a compatible porous material. A cylindrical target cavity is separated into multiple regions by thin sheet metal dividers. The dividers are of the same scale thickness as the powder size to retain a one dimensional condition in most of the compact. The third method may be the most interesting technologically. A powder media of near impedance match to the material under study is selected which resists bonding under the shock conditions to be used. Pressed greens of the material to be consolidated are then embedded in this pressure -transmitting media. The greens are then shocked along with the 'non-stick' media. In our experiment, a discontinuously reinforced metal matrix composite (MMC) was shock consolidated to near net shape by this method. Ti powder was mixed with SiC powder, pressed into a green with corners and radii, and embedded in fine zirconia powder. The shock wave generated by a 304 stainless steel flyer plate accelerated to 1.0 km/ s fully consolidated the MMC without bonding the zirconia. The compact was recovered with well defined corners and flat surfaces

    The Effect of Small Concentrations of Carbon Impurity on Dislocation Mobility in Iron Monocrystals

    Get PDF
    Experiments have recently been reported by Turner and Vreeland (1) in which the dislocation velocities in pure iron single crystals were measured. This paper describes some limited results for identical experiments on crystals containing approximately 45 ppm by weight, of carbon. These results indicate that the carbon has very little effect on the velocity of free dislocations. However strong pinning effects were observed for aged dislocations

    Influence of substrate temperature on lattice strain field and phase transition in MeV oxygen ion implanted GaAs crystals

    Get PDF
    A detailed study of the influence of substrate temperature on the radiation-induced lattice strain field and crystalline-to-amorphous (c-a) phase transition in MeV oxygen ion implanted GaAs crystals has been made using channeling Rutherford backscattering spectroscopy, secondary ion mass spectrometry, and the x-ray rocking curve technique. A comparison has been made between the cases of room temperature (RT) and low temperature (LT) (about 100 K) implantation. A strong in situ dynamic annealing process is found in RT implantation at a moderate beam current, resulting in a uniform positive strain field in the implanted layer. LT implantation introduces a freeze-in effect which impedes the recombination and diffusion of initial radiation-created lattice damage and defects, and in turn drives more efficiently the c-a transition as well as strain saturation and relaxation. The results are interpreted with a spike damage model in which the defect production process is described in terms of the competition between defect generation by nuclear spikes and defects diffusion and recombination stimulated by electronic spikes. It is also suggested that the excess population of vacancies and their complexes is responsible for lattice spacing expansion in ion-implanted GaAs crystals
    • 

    corecore