4,550 research outputs found
Long-term development of reservoir ecosystems - changes in pelagic food webs and their microbial component
Reservoirs differ from lakes mostly in three aspects: (i) water residence times usually are not longer than several months, (ii) horizontal heterogeneity induced by the inflowing river water is more pronounced, and (iii) they are historically much younger than lakes. As a consequence, seasonal and long-term dynamics of pelagic food webs reflect the changes in the catchment and hydrological variations more significantly than in lakes, and an ageing and "maturing" of the reservoir ecosystem might affect the pelagic biomass even several decades after filling. Using long-term data sets on pelagic biomass components from canyonshaped reservoirs of different residence time, the following topics are discussed: (1) changes of pelagic bacteria-phytoplankton - zooplankton abundances during ageing as well as longitudinal changes from the river inflow dowstream to the lacustrine part of a reservoir, (2) long-term changes of pelagic bacteria-phytoplankton-zooplankton abundances and seasonal changes of microbial loop in two reservoirs of different residence times. Periods with relative prevalence of bacterial above zooplankton biomass were detected, mostly coinciding with (or following after) the periods with low phytoplankton to zooplankton ratios.Los embalses difieren de los lagos principalmente en tres aspectos: (i) el tiempo de residencia del agua no suele ser superior a varios meses, (ii) la heterogeneidad horizontal inducida por la entrada de agua fluvial es más marcada, y (iii) son históricamente mucho más jóvenes que los lagos. Como consecuencia de todo ello, las dinámicas estacional y a largo plazo de las redes tróficas pelágicas reflejan los cambios en la cuenca y las variaciones hidrológicas más significativamente que en los lagos, y el envejecimiento y "madurez" del ecosistema del embalse podría afectar a la biomasa pelágica incluso varias décadas después de su llenado. Mediante el análisis de largas series de datos sobre la biomasa de componentes pelágicos en embalses con sección en forma de cañón y diferentes tiempos de residencia, se discuten los siguientes aspectos: (1) cambios en las abundancias de bacterias-fitoplancton-zooplancton pelágicos durante el envejecimiento del embalse, así como cambios longitudinales desde la entrada de los ríos hasta la zona lacustre del embalse, (2) cambios a largo plazo en las abundancias de bacterias-fitoplancton-zooplancton pelágicos y cambios estacionales del bucle microbiano en dos embalses con diferentes tiempos de residencia. Se detectaron períodos con un predominio relativo de la biomasa bacteriana sobre la biomasa de zooplancton, coincidiendo principalmente con (o justamente después de) los períodos con bajas relaciones fitoplancton / zooplancton
Loop-mediated isothermal amplification (LAMP) assays for the species-specific detection of Eimeria that infect chickens
<p>Abstract</p> <p>Background</p> <p><it>Eimeria </it>parasites can cause the disease coccidiosis in poultry and even subclinical infection can incur economic loss. Diagnosis of infection predominantly relies on traditional techniques including lesion scoring and faecal microscopy despite the availability of sensitive molecular assays, largely due to cost and the requirement for specialist equipment. Despite longstanding proven efficacy these traditional techniques demand time and expertise, can be highly subjective and may under-diagnose subclinical disease. Recognition of the tight economic margins prevailing in modern poultry production and the impact of avian coccidiosis on poverty in many parts of the world has highlighted a requirement for a panel of straightforward and sensitive, but cost-effective, <it>Eimeria </it>species-specific diagnostic assays.</p> <p>Results</p> <p>Loop-mediated isothermal amplification (LAMP) is an uncomplicated, quick and relatively inexpensive diagnostic tool. In this study we have developed a panel of species-specific LAMP assays targeting the seven <it>Eimeria </it>species that infect the chicken. Each assay has been shown to be genuinely species-specific with the capacity to detect between one and ten eimerian genomes, equivalent to less than a single mature schizont. Development of a simple protocol for template DNA preparation from tissue collected post mortem with no requirement for specialist laboratory equipment supports the use of these assays in routine diagnosis of eimerian infection. Preliminary field testing supports this hypothesis.</p> <p>Conclusions</p> <p>Development of a panel of sensitive species-specific LAMP assays introduces a valuable new cost-effective tool for use in poultry husbandry.</p
A 10-micron Search for Inner-Truncated Disks Among Pre-Main-Sequence Stars With Photometric Rotation Periods
We use mid-IR (primarily 10 m) photometry as a diagnostic for the
presence of disks with inner cavities among 32 pre-main sequence stars in Orion
and Taurus-Auriga for which rotation periods are known and which do not show
evidence for inner disks at near-IR wavelengths. Disks with inner cavities are
predicted by magnetic disk-locking models that seek to explain the regulation
of angular momentum in T Tauri stars. Only three stars in our sample show
evidence for excess mid-IR emission. While these three stars may possess
truncated disks consistent with magnetic disk-locking models, the remaining 29
stars in our sample do not. Apparently, stars lacking near-IR excesses in
general do not possess truncated disks to which they are magnetically coupled.
We discuss the implications of this result for the hypothesis of
disk-regulated angular momentum. Evidently, young stars can exist as slow
rotators without the aid of present disk-locking, and there exist very young
stars already rotating near breakup velocity whose subsequent angular momentum
evolution will not be regulated by disks. Moreover, we question whether disks,
when present, truncate in the manner required by disk-locking scenarios.
Finally, we discuss the need for rotational evolution models to take full
account of the large dispersion of rotation rates present at 1 Myr, which may
allow the models to explain the rotational evolution of low-mass pre-main
sequence stars in a way that does not depend upon braking by disks.Comment: 20 pages, 4 figure
Results of the ROTOR-program. I. The long-term photometric variability of classical T Tauri stars
We present a unique, homogeneous database of photometric measurements for
Classical T Tauri stars extending up to 20 years. The database contains more
than 21,000 UBVR observations of 72 CTTs. All the data were collected within
the framework of the ROTOR-program at Mount Maidanak Observatory (Uzbekistan)
and together they constitute the longest homogeneous, accurate record of TTS
variability ever assembled. We characterize the long term photometric
variations of 49 CTTs with sufficient data to allow a robust statistical
analysis and propose an empirical classification scheme. Several patterns of
long term photometric variability are identified. The most common pattern,
exhibited by a group of 15 stars which includes T Tau itself, consists of low
level variability (Delta(V)<=0.4mag) with no significant changes occurring from
season to season over many years. A related subgroup of 22 stars exhibits a
similar stable long term variability pattern, though with larger amplitudes (up
to Delta(V)~1.6 mag). Besides these representative groups, we identify three
smaller groups of 3-5 stars each which have distinctive photometric properties.
The long term variability of most CTTs is fairly stable and merely reflects
shorter term variability due to cold and hot surface spots. Only a small
fraction of CTTs undergo significant brightness changes on the long term
(months, years), which probably arise from slowly varying circumstellar
extinction.Comment: 16 pages, 11 figures. Astron. Astrophys., in pres
Biomic Specialization and Speciation Rates in Ruminants (Cetartiodactyla, Mammalia): A Test of the Resource-Use Hypothesis at the Global Scale
The resource-use hypothesis proposed by E.S. Vrba predicts that specialist species have higher speciation and extinction rates than generalists because they are more susceptible to environmental changes and vicariance. In this work, we test some of the predictions derived from this hypothesis on the 197 extant and recently extinct species of Ruminantia (Cetartiodactyla, Mammalia) using the biomic specialization index (BSI) of each species, which is based on its distribution within different biomes. We ran 10000 Monte Carlo simulations of our data in order to get a null distribution of BSI values against which to contrast the observed data. Additionally, we drew on a supertree of the ruminants and a phylogenetic likelihood-based method (QuaSSE) for testing whether the degree of biomic specialization affects speciation rates in ruminant lineages. Our results are consistent with the predictions of the resource-use hypothesis, which foretells a higher speciation rate of lineages restricted to a single biome (BSI = 1) and higher frequency of specialist species in biomes that underwent high degree of contraction and fragmentation during climatic cycles. Bovids and deer present differential specialization across biomes; cervids show higher specialization in biomes with a marked hydric seasonality (tropical deciduous woodlands and schlerophyllous woodlands), while bovids present higher specialization in a greater variety of biomes. This might be the result of divergent physiological constraints as well as a different biogeographic and evolutionary history
Dynamical Mass Constraints on Low-Mass Pre-Main-Sequence Stellar Evolutionary Tracks: An Eclipsing Binary in Orion with a 1.0 Msun Primary and an 0.7 Msun Secondary
We report the discovery of a double-lined, spectroscopic, eclipsing binary in
the Orion star-forming region. We analyze the system spectroscopically and
photometrically to empirically determine precise, distance-independent masses,
radii, effective temperatures, and luminosities for both components. The
measured masses for the primary and secondary, accurate to ~1%, are 1.01 Msun
and 0.73 Msun, respectively; thus the primary is a definitive pre-main-sequence
solar analog, and the secondary is the lowest-mass star yet discovered among
pre-main-sequence eclipsing binary systems. We use these fundamental
measurements to test the predictions of pre-main-sequence stellar evolutionary
tracks. None of the models we examined correctly predict the masses of the two
components simultaneously, and we implicate differences between the theoretical
and empirical effective temperature scales for this failing. All of the models
predict the observed slope of the mass-radius relationship reasonably well,
though the observations tend to favor models with low convection efficiencies.
Indeed, considering our newly determined mass measurements together with other
dynamical mass measurements of pre-main-sequence stars in the literature, as
well as measurements of Li abundances in these stars, we show that the data
strongly favor evolutionary models with inefficient convection in the stellar
interior, even though such models cannot reproduce the properties of the
present-day Sun.Comment: Accepted by Ap
The Disappearing Act of KH 15D: Photometric Results from 1995 to 2004
We present results from the most recent (2002-2004) observing campaigns of
the eclipsing system KH 15D, in addition to re-reduced data obtained at Van
Vleck Observatory (VVO) between 1995 and 2000. Phasing nine years of
photometric data shows substantial evolution in the width and depth of the
eclipses. The most recent data indicate that the eclipses are now approximately
24 days in length, or half the orbital period. These results are interpreted
and discussed in the context of the recent models for this system put forward
by Winn et al. and Chiang & Murray-Clay. A periodogram of the entire data set
yields a highly significant peak at 48.37 +/- 0.01 days, which is in accord
with the spectroscopic period of 48.38 +/- 0.01 days determined by Johnson et
al. Another significant peak, at 9.6 days, was found in the periodogram of the
out-of-eclipse data at two different epochs. We interpret this as the rotation
period of the visible star and argue that it may be tidally locked in
pseudosynchronism with its orbital motion. If so, application of Hut's theory
implies that the eccentricity of the orbit is e = 0.65 +/- 0.01. Analysis of
the UVES/VLT spectra obtained by Hamilton et al. shows that the v sin(i) of the
visible star in this system is 6.9 +/- 0.3 km/sec. Using this value of v sin(i)
and the measured rotation period of the star, we calculate the lower limit on
the radius to be R = (1.3 +/- 0.1), R_Sun, which concurs with the value
obtained by Hamilton et al. from its luminosity and effective temperature. Here
we assume that i = 90 degrees since it is likely that the spin and orbital
angular momenta vectors are nearly aligned.Comment: 55 pages, 18 figures, 1 color figure, to appear the September issue
of the Astronomical Journa
- …