457 research outputs found
Structure calculation, refinement and validation using CcpNmr Analysis
CcpNmr Analysis provides a streamlined pipeline for both NMR chemical shift assignment and structure determination of biological macromolecules. In addition, it encompasses tools to analyse the many additional experiments that make NMR such a pivotal technique for research into complex biological questions. This report describes how CcpNmr Analysis can seamlessly link together all of the tasks in the NMR structure-determination process. It details each of the stages from generating NMR restraints [distance, dihedral,hydrogen bonds and residual dipolar couplings (RDCs)],exporting these to and subsequently re-importing them from structure-calculation software (such as the programs CYANA or ARIA) and analysing and validating the results obtained from the structure calculation to, ultimately, the streamlined deposition of the completed assignments and the refined ensemble of structures into the PDBe repository. Until recently, such solution-structure determination by NMR has been quite a laborious task, requiring multiple stages and programs. However, with the new enhancements to CcpNmr Analysis described here, this process is now much more intuitive and efficient and less error-prone
Probing interactions in mesoscopic gold wires
We have measured in gold wires the energy exchange rate between
quasiparticles, the phase coherence time of quasiparticles and the resistance
vs. temperature, in order to probe the interaction processes which are relevant
at low temperatures. We find that the energy exchange rate is higher than
expected from the theory of electron-electron interactions, and that it has a
different energy dependence. The dephasing time is constant at temperatures
between 8 K and 0.5 K, and it increases below 0.5 K. The magnetoresistance is
negative at large field scales, and the resistance decreases logarithmically
with increasing temperatures, indicating the presence of magnetic impurities,
probably Fe. Whereas resistivity and phase coherence measurements can be
attributed to magnetic impurities, the question is raised whether these
magnetic impurities could also mediate energy exchanges between quasiparticles.Comment: latex pothier.tex, 12 files, 15 pages in: Proceedings of the NATO
Advanced Research Workshop on Size Dependent Magnetic Scattering, Pesc,
Hungary, May 28 - June 1st, 2000 Chandrasekhar V., Van Haesendonck C. eds
(Kluwer, 2001) [SPEC-S00/083
Electron dephasing near zero temperature: an experimental review
The behavior of the electron dephasing time near zero temperature,
, has recently attracted vigorous attention. This renewed interest
is primarily concerned with whether should reach a finite or an
infinite value as 0. While it is accepted that should
diverge if there exists only electron-electron (electron-phonon) scattering,
several recent measurements have found that depends only very
weakly on temperature, if at all, when is sufficiently low. This article
discusses the current experimental status of "the saturation problem", and
concludes that the origin(s) for this widely observed saturation are still
unresolved
Rap1 binding and a lipid-dependent helix in talin F1 domain promote integrin activation in tandem.
Rap1 GTPases bind effectors, such as RIAM, to enable talin1 to induce integrin activation. In addition, Rap1 binds directly to the talin1 F0 domain (F0); however, this interaction makes a limited contribution to integrin activation in CHO cells or platelets. Here, we show that talin1 F1 domain (F1) contains a previously undetected Rap1-binding site of similar affinity to that in F0. A structure-guided point mutant (R118E) in F1, which blocks Rap1 binding, abolishes the capacity of Rap1 to potentiate talin1-induced integrin activation. The capacity of F1 to mediate Rap1-dependent integrin activation depends on a unique loop in F1 that has a propensity to form a helix upon binding to membrane lipids. Basic membrane-facing residues of this helix are critical, as charge-reversal mutations led to dramatic suppression of talin1-dependent activation. Thus, a novel Rap1-binding site and a transient lipid-dependent helix in F1 work in tandem to enable a direct Rap1-talin1 interaction to cause integrin activation
Electron Dephasing in Mesoscopic Metal Wires
The low-temperature behavior of the electron phase coherence time,
, in mesoscopic metal wires has been a subject of controversy
recently. Whereas theory predicts that in narrow wires should
increase as as the temperature is lowered, many samples exhibit
a saturation of below about 1 K. We review here the experiments
we have performed recently to address this issue. In particular we emphasize
that in sufficiently pure Ag and Au samples we observe no saturation of
down to our base temperature of 40 mK. In addition, the measured
magnitude of is in excellent quantitative agreement with the
prediction of the perturbative theory of Altshuler, Aronov and Khmelnitskii. We
discuss possible explanations why saturation of is observed in
many other samples measured in our laboratory and elsewhere, and answer the
criticisms raised recently by Mohanty and Webb regarding our work.Comment: 14 pages, 3 figures; to appear in proceedings of conference
"Fundamental Problems of Mesoscopic Physics", Granada, Spain, 6-11 September,
200
Kondo Effect on Mesoscopic Scale (Review)
Following the discovery of the Kondo effect the bulk transport and magnetic
behavior of the dilute magnetic alloys have been successfully described. In the
last fifteen years new directions have been developed as the study of the
systems of reduced dimensions and the artificial atoms so called quantum dots.
In this review the first subject is reviewed starting with the scanning
tunneling microscope (STM) study of a single magnetic impurity. The next
subject is the reduction of the amplitude of the Kondo effect in samples of
reduced dimension which was explained by the surface magnetic anisotropy which
blocks the motion of the integer spin nearby the surface. The electron
dephasing and energy relaxation experiments are discussed with the possible
explanation including the surface anisotropy, where the situation in cases of
integer and half-integer spins is very different. Finally, the present
situation of the theory of dynamical structural defects is briefly presented
which may lead to two-channel Kondo behavior.Comment: 8 pages, submitted to the JPSJ Special Issue "Kondo effect -- 40
years after the Discovery
Estimation of interdomain flexibility of N-terminus of factor H using residual dipolar couplings
Characterization of segmental flexibility is needed to understand the biological mechanisms of the very large category of functionally diverse proteins, exemplified by the regulators of complement activation, that consist of numerous compact modules or domains linked by short, potentially flexible, sequences of amino acid residues. The use of NMR-derived residual dipolar couplings (RDCs), in magnetically aligned media, to evaluate interdomain motion is established but only for two-domain proteins. We focused on the three N-terminal domains (called CCPs or SCRs) of the important complement regulator, human factor H (i.e. FH1-3). These domains cooperate to facilitate cleavage of the key complement activation-specific protein fragment, C3b, forming iC3b that no longer participates in the complement cascade. We refined a three-dimensional solution structure of recombinant FH1-3 based on nuclear Overhauser effects and RDCs. We then employed a rudimentary series of RDC datasets, collected in media containing magnetically aligned bicelles (disk-like particles formed from phospholipids) under three different conditions, to estimate interdomain motions. This circumvents a requirement of previous approaches for technically difficult collection of five independent RDC datasets. More than 80% of conformers of this predominantly extended three-domain molecule exhibit flexions of < 40 °. Such segmental flexibility (together with the local dynamics of the hypervariable loop within domain 3), could facilitate recognition of C3b via initial anchoring and eventual reorganization of modules to the conformation captured in the previously solved crystal structure of a C3b:FH1-4 complex
Solution NMR assignment of the C-terminal domain of human chTOG
The microtubule regulatory protein colonic and hepatic tumor overexpressed gene (chTOG), also known as cytoskeleleton associated protein 5 (CKAP5) plays an important role in organizing the cytoskeleton and in particular in the assembly of k-fibres in mitosis. Recently, we dissected the hitherto poorly understood C-terminus of this protein by discovering two new domains—a cryptic TOG domain (TOG6) and a smaller, helical domain at the very C-terminus. It was shown that the C-terminal domain is important for the interaction with the TACC domain in TACC3 during the assembly of k-fibres in a ternary complex that also includes clathrin. Here we now present the solution NMR assignment of the chTOG C-terminal domain which confirms our earlier prediction that it is mainly made of α-helices. However, the appearance of the 1H–15N HSQC spectrum is indicative of the presence of a considerable amount of unstructured and possibly flexible portions of protein in the domain
PDBe: Protein Data Bank in Europe
The Protein Data Bank in Europe (PDBe) (http://www.ebi.ac.uk/pdbe/) is actively working with its Worldwide Protein Data Bank partners to enhance the quality and consistency of the international archive of bio-macromolecular structure data, the Protein Data Bank (PDB). PDBe also works closely with its collaborators at the European Bioinformatics Institute and the scientific community around the world to enhance its databases and services by adding curated and actively maintained derived data to the existing structural data in the PDB. We have developed a new database infrastructure based on the remediated PDB archive data and a specially designed database for storing information on interactions between proteins and bound molecules. The group has developed new services that allow users to carry out simple textual queries or more complex 3D structure-based queries. The newly designed ‘PDBeView Atlas pages’ provide an overview of an individual PDB entry in a user-friendly layout and serve as a starting point to further explore the information available in the PDBe database. PDBe’s active involvement with the X-ray crystallography, Nuclear Magnetic Resonance spectroscopy and cryo-Electron Microscopy communities have resulted in improved tools for structure deposition and analysis
- …