539 research outputs found

    RAPID AND RELIABLE HEALING OF CRITICAL SIZE BONE DEFECTS WITH GENETICALLY MODIFIED SHEEP MUSCLE

    Get PDF
    Large segmental defects in bone fail to heal and remain a clinical problem. Muscle is highly osteogenic, and preliminary data suggest that autologous muscle tissue expressing bone morphogenetic protein-2 (BMP-2) efficiently heals critical size defects in rats. Translation into possible human clinical trials requires, inter alia, demonstration of efficacy in a large animal, such as the sheep. Scale-up is fraught with numerous biological, anatomical, mechanical and structural variables, which cannot be addressed systematically because of cost and other practical issues. For this reason, we developed a translational model enabling us to isolate the biological question of whether sheep muscle, transduced with adenovirus expressing BMP-2, could heal critical size defects in vivo. Initial experiments in athymic rats noted strong healing in only about one-third of animals because of unexpected immune responses to sheep antigens. For this reason, subsequent experiments were performed with Fischer rats under transient immunosuppression. Such experiments confirmed remarkably rapid and reliable healing of the defects in all rats, with bridging by 2 weeks and remodelling as early as 3-4 weeks, despite BMP-2 production only in nanogram quantities and persisting for only 1-3 weeks. By 8 weeks the healed defects contained well-organised new bone with advanced neo-cortication and abundant marrow. Bone mineral content and mechanical strength were close to normal values. These data demonstrate the utility of this model when adapting this technology for bone healing in sheep, as a prelude to human clinical trials

    Use of genetically modified muscle and fat grafts to repair defects in bone and cartilage

    Get PDF
    We report a novel technology for the rapid healing of large osseous and chondral defects, based upon the genetic modification of autologous skeletal muscle and fat grafts. These tissues were selected because they not only possess mesenchymal progenitor cells and scaffolding properties, but also can be biopsied, genetically modified and returned to the patient in a single operative session. First generation adenovirus vector carrying cDNA encoding human bone morphogenetic protein-2 (Ad.BMP-2) was used for gene transfer to biopsies of muscle and fat. To assess bone healing, the genetically modified ("gene activated") tissues were implanted into 5mm-long critical size, mid-diaphyseal, stabilized defects in the femora of Fischer rats. Unlike control defects, those receiving gene-activated muscle underwent rapid healing, with evidence of radiologic bridging as early as 10 days after implantation and restoration of full mechanical strength by 8 weeks. Histologic analysis suggests that the grafts rapidly differentiated into cartilage, followed by efficient endochondral ossification. Fluorescence in situ hybridization detection of Y-chromosomes following the transfer of male donor muscle into female rats demonstrated that at least some of the osteoblasts of the healed bone were derived from donor muscle. Gene activated fat also healed critical sized defects, but less quickly than muscle and with more variability. Anti-adenovirus antibodies were not detected. Pilot studies in a rabbit osteochondral defect model demonstrated the promise of this technology for healing cartilage defects. Further development of these methods should provide ways to heal bone and cartilage more expeditiously, and at lower cost, than is presently possible

    A study of CP violation in the decays B±→[K+K-π+π-]Dh± (h= K, π) and B±→[π+π-π+π-]Dh±

    Get PDF
    The first study of CP violation in the decay mode B±→[K+K-π+π-]Dh± , with h= K, π , is presented, exploiting a data sample of proton–proton collisions collected by the LHCb experiment that corresponds to an integrated luminosity of 9 \,fb - 1 . The analysis is performed in bins of phase space, which are optimised for sensitivity to local CP asymmetries. CP -violating observables that are sensitive to the angle γ of the Unitarity Triangle are determined. The analysis requires external information on charm-decay parameters, which are currently taken from an amplitude analysis of LHCb data, but can be updated in the future when direct measurements become available. Measurements are also performed of phase-space integrated observables for B±→[K+K-π+π-]Dh± and B±→[π+π-π+π-]Dh± decays

    Measurement of lepton universality parameters in B+K++B^+\to K^+\ell^+\ell^- and B0K0+B^0\to K^{*0}\ell^+\ell^- decays

    Get PDF
    A simultaneous analysis of the B+K++B^+\to K^+\ell^+\ell^- and B0K0+B^0\to K^{*0}\ell^+\ell^- decays is performed to test muon-electron universality in two ranges of the square of the dilepton invariant mass, q2q^2. The measurement uses a sample of beauty meson decays produced in proton-proton collisions collected with the LHCb detector between 2011 and 2018, corresponding to an integrated luminosity of 99 fb1\text{fb}^{-1}. A sequence of multivariate selections and strict particle identification requirements produce a higher signal purity and a better statistical sensitivity per unit luminosity than previous LHCb lepton universality tests using the same decay modes. Residual backgrounds due to misidentified hadronic decays are studied using data and included in the fit model. Each of the four lepton universality measurements reported is either the first in the given q2q^2 interval or supersedes previous LHCb measurements. The results are compatible with the predictions of the Standard Model.Comment: All figures and tables, along with any supplementary material and additional information, are available at https://cern.ch/lhcbproject/Publications/p/LHCb-PAPER-2022-045.html (LHCb public pages

    Observation of Cabibbo-suppressed two-body hadronic decays and precision mass measurement of the Ωc0\Omega_{c}^{0} baryon

    Full text link
    The first observation of the singly Cabibbo-suppressed Ωc0ΩK+\Omega_{c}^{0}\to\Omega^{-}K^{+} and Ωc0Ξπ+\Omega_{c}^{0}\to\Xi^{-}\pi^{+} decays is reported, using proton-proton collision data at a centre-of-mass energy of 13TeV13\,{\rm TeV}, corresponding to an integrated luminosity of 5.4fb15.4\,{\rm fb}^{-1}, collected with the LHCb detector between 2016 and 2018. The branching fraction ratios are measured to be B(Ωc0ΩK+)B(Ωc0Ωπ+)=0.0608±0.0051(stat)±0.0040(syst)\frac{\mathcal{B}(\Omega_{c}^{0}\to\Omega^{-}K^{+})}{\mathcal{B}(\Omega_{c}^{0}\to\Omega^{-}\pi^{+})}=0.0608\pm0.0051({\rm stat})\pm 0.0040({\rm syst}), B(Ωc0Ξπ+)B(Ωc0Ωπ+)=0.1581±0.0087(stat)±0.0043(syst)±0.0016(ext)\frac{\mathcal{B}(\Omega_{c}^{0}\to\Xi^{-}\pi^{+})}{\mathcal{B}(\Omega_{c}^{0}\to\Omega^{-}\pi^{+})}=0.1581\pm0.0087({\rm stat})\pm0.0043({\rm syst})\pm0.0016({\rm ext}). In addition, using the Ωc0Ωπ+\Omega_{c}^{0}\to\Omega^{-}\pi^{+} decay channel, the Ωc0\Omega_{c}^{0} baryon mass is measured to be M(Ωc0)=2695.28±0.07(stat)±0.27(syst)±0.30(ext)MeV/c2M(\Omega_{c}^{0})=2695.28\pm0.07({\rm stat})\pm0.27({\rm syst})\pm0.30({\rm ext})\,{\rm MeV}/c^{2}, improving the precision of the previous world average by a factor of four.Comment: All figures and tables, along with any supplementary material and additional information, are available at https://cern.ch/lhcbproject/Publications/p/LHCb-PAPER-2023-011.html (LHCb public pages

    Measurement of ZZ boson production cross-section in pppp collisions at s=5.02\sqrt{s} = 5.02 TeV

    Full text link
    The first measurement of the ZZ boson production cross-section at centre-of-mass energy s=5.02\sqrt{s} = 5.02\,TeV in the forward region is reported, using pppp collision data collected by the LHCb experiment in year 2017, corresponding to an integrated luminosity of 100±2pb1100 \pm 2\,\rm{pb^{-1}}. The production cross-section is measured for final-state muons in the pseudorapidity range 2.020GeV/c2.0 20\,\rm{GeV/}\it{c}. The integrated cross-section is determined to be σZμ+μ=39.6±0.7(stat)±0.6(syst)±0.8(lumi) pb \sigma_{Z \rightarrow \mu^{+}\mu^{-}} = 39.6 \pm 0.7\,(\rm{stat}) \pm 0.6\,(\rm{syst}) \pm 0.8\,(\rm{lumi}) \ \rm{pb} for the di-muon invariant mass in the range 60<Mμμ<120GeV/c260<M_{\mu\mu}<120\,\rm{GeV/}\it{c^{2}}. This result and the differential cross-section results are in good agreement with theoretical predictions at next-to-next-to-leading order in the strong coupling. Based on a previous LHCb measurement of the ZZ boson production cross-section in ppPb collisions at sNN=5.02\sqrt{s_{NN}}=5.02 TeV, the nuclear modification factor RpPbR_{p\rm{Pb}} is measured for the first time at this energy. The measured values are 1.20.3+0.5(stat)±0.1(syst)1.2^{+0.5}_{-0.3}\,(\rm{stat}) \pm 0.1\,(\rm{syst}) in the forward region (1.53<yμ<4.031.53<y^*_{\mu}<4.03) and 3.60.9+1.6(stat)±0.2(syst)3.6^{+1.6}_{-0.9}\,(\rm{stat}) \pm 0.2\,(\rm{syst}) in the backward region (4.97<yμ<2.47-4.97<y^*_{\mu}<-2.47), where yμy^*_{\mu} represents the muon rapidity in the centre-of-mass frame.Comment: All figures and tables, along with any supplementary material and additional information, are available at https://cern.ch/lhcbproject/Publications/p/LHCb-PAPER-2023-010.html (LHCb public pages

    Study of charmonium decays to KS0KπK^0_S K \pi in the B(KS0Kπ)KB \to (K^0_S K \pi) K channels

    Get PDF
    A study of the B+KS0K+Kπ+B^+\to K^0_SK^+K^-\pi^+ and B+KS0K+K+πB^+\to K^0_SK^+K^+\pi^- decays is performed using proton-proton collisions at center-of-mass energies of 7, 8 and 13 TeV at the LHCb experiment. The KS0KπK^0_SK \pi invariant mass spectra from both decay modes reveal a rich content of charmonium resonances. New precise measurements of the ηc\eta_c and ηc(2S)\eta_c(2S) resonance parameters are performed and branching fraction measurements are obtained for B+B^+ decays to ηc\eta_c, J/ψJ/\psi, ηc(2S)\eta_c(2S) and χc1\chi_{c1} resonances. In particular, the first observation and branching fraction measurement of B+χc0K0π+B^+ \to \chi_{c0} K^0 \pi^+ is reported as well as first measurements of the B+K0K+Kπ+B^+\to K^0K^+K^-\pi^+ and B+K0K+K+πB^+\to K^0K^+K^+\pi^- branching fractions. Dalitz plot analyses of ηcKS0Kπ\eta_c \to K^0_SK\pi and ηc(2S)KS0Kπ\eta_c(2S) \to K^0_SK\pi decays are performed. A new measurement of the amplitude and phase of the KπK \pi SS-wave as functions of the KπK \pi mass is performed, together with measurements of the K0(1430)K^*_0(1430), K0(1950)K^*_0(1950) and a0(1700)a_0(1700) parameters. Finally, the branching fractions of χc1\chi_{c1} decays to KK^* resonances are also measured.Comment: All figures and tables, along with any supplementary material and additional information, are available at https://cern.ch/lhcbproject/Publications/p/LHCb-PAPER-2022-051.html (LHCb public pages

    Studies of η\eta and η\eta' production in pppp and ppPb collisions

    Full text link
    The production of η\eta and η\eta' mesons is studied in proton-proton and proton-lead collisions collected with the LHCb detector. Proton-proton collisions are studied at center-of-mass energies of 5.025.02 and 13 TeV13~{\rm TeV}, and proton-lead collisions are studied at a center-of-mass energy per nucleon of 8.16 TeV8.16~{\rm TeV}. The studies are performed in center-of-mass rapidity regions 2.5<yc.m.<3.52.5<y_{\rm c.m.}<3.5 (forward rapidity) and 4.0<yc.m.<3.0-4.0<y_{\rm c.m.}<-3.0 (backward rapidity) defined relative to the proton beam direction. The η\eta and η\eta' production cross sections are measured differentially as a function of transverse momentum for 1.5<pT<10 GeV1.5<p_{\rm T}<10~{\rm GeV} and 3<pT<10 GeV3<p_{\rm T}<10~{\rm GeV}, respectively. The differential cross sections are used to calculate nuclear modification factors. The nuclear modification factors for η\eta and η\eta' mesons agree at both forward and backward rapidity, showing no significant evidence of mass dependence. The differential cross sections of η\eta mesons are also used to calculate η/π0\eta/\pi^0 cross section ratios, which show evidence of a deviation from the world average. These studies offer new constraints on mass-dependent nuclear effects in heavy-ion collisions, as well as η\eta and η\eta' meson fragmentation.Comment: All figures and tables, along with machine-readable versions and any supplementary material and additional information, are available at https://lhcbproject.web.cern.ch/Publications/p/LHCb-PAPER-2023-030.html (LHCb public pages

    Test of lepton flavour universality using B0Dτ+ντB^0 \to D^{*-}\tau^+\nu_{\tau} decays with hadronic τ\tau channels

    Get PDF
    The branching fraction B(B0Dτ+ντ)\mathcal{B}(B^0 \to D^{*-}\tau^+\nu_{\tau}) is measured relative to that of the normalisation mode B0Dπ+ππ+B^0 \to D^{*-}\pi^+\pi^-\pi^+ using hadronic τ+π+ππ+(π0)νˉτ\tau^+ \to \pi^+\pi^-\pi^+(\pi^0)\bar{\nu}_{\tau} decays in proton-proton collision data at a centre-of-mass energy of 13 TeV collected by the LHCb experiment, corresponding to an integrated luminosity of 2 fb1^{-1}. The measured ratio is B(B0Dτ+ντ)/B(B0Dπ+ππ+)=1.70±0.100.10+0.11\mathcal{B}(B^0 \to D^{*-}\tau^+\nu_{\tau})/\mathcal{B}(B^0 \to D^{*-}\pi^+\pi^-\pi^+)= 1.70 \pm 0.10^{+0.11}_{-0.10}, where the first uncertainty is statistical and the second is related to systematic effects. Using established branching fractions for the B0Dπ+ππ+B^0 \to D^{*-}\pi^+\pi^-\pi^+ and B0Dμ+νμB^0 \to D^{*-} \mu^+\nu_\mu modes, the lepton universality test, R(D)B(B0Dτ+ντ)/B(B0Dμ+νμ)\mathcal{R}(D^{*-}) \equiv \mathcal{B}(B^0 \to D^{*-}\tau^+\nu_{\tau})/\mathcal{B}(B^0 \to D^{*-} \mu^+\nu_\mu) is calculated, R(D)=0.247±0.015±0.015±0.012, \mathcal{R}(D^{*-}) = 0.247 \pm 0.015 \pm 0.015 \pm 0.012\, , where the third uncertainty is due to the uncertainties on the external branching fractions. This result is consistent with the Standard Model prediction and with previous measurements.Comment: All figures and tables, along with machine-readable versions and any supplementary material and additional information, are available at https://cern.ch/lhcbproject/Publications/p/LHCb-PAPER-2022-052.html (LHCb public pages

    Observation of the decays B(s)0Ds1(2536)K±B_{(s)}^{0}\to D_{s1}(2536)^{\mp}K^{\pm}

    Full text link
    This paper reports the observation of the decays B(s)0Ds1(2536)K±B_{(s)}^{0}\to D_{s1}(2536)^{\mp}K^{\pm} using proton-proton collision data collected by the LHCb experiment, corresponding to an integrated luminosity of 9fb19\,\mathrm{fb}^{-1}. The branching fractions of these decays are measured relative to the normalisation channel B0D0K+KB^{0}\to \overline{D}^{0}K^{+}K^{-}. The Ds1(2536)D_{s1}(2536)^{-} meson is reconstructed in the D(2007)0K\overline{D}^{*}(2007)^{0}K^{-} decay channel and the products of branching fractions are measured to be B(Bs0Ds1(2536)K±)×B(Ds1(2536)D(2007)0K)=(2.49±0.11±0.12±0.25±0.06)×105,\mathcal{B}(B_{s}^{0}\to D_{s1}(2536)^{\mp}K^{\pm})\times\mathcal{B}(D_{s1}(2536)^{-}\to\overline{D}^{*}(2007)^{0}K^{-})=(2.49\pm0.11\pm0.12\pm0.25\pm0.06)\times 10^{-5}, B(B0Ds1(2536)K±)×B(Ds1(2536)D(2007)0K)=(0.510±0.021±0.036±0.050)×105.\mathcal{B}(B^{0}\to D_{s1}(2536)^{\mp}K^{\pm})\times\mathcal{B}(D_{s1}(2536)^{-}\to\overline{D}^{*}(2007)^{0}K^{-}) = (0.510\pm0.021\pm0.036\pm0.050)\times 10^{-5}. The first uncertainty is statistical, the second systematic, and the third arises from the uncertainty of the branching fraction of the B0D0K+KB^{0}\to \overline{D}^{0}K^{+}K^{-} normalisation channel. The last uncertainty in the Bs0B_{s}^{0} result is due to the limited knowledge of the fragmentation fraction ratio, fs/fdf_{s}/f_{d}. The significance for the Bs0B_{s}^{0} and B0B^{0} signals is larger than 10σ10\,\sigma. The ratio of the helicity amplitudes which governs the angular distribution of the Ds1(2536)D(2007)0KD_{s1}(2536)^{-}\to\overline{D}^{*}(2007)^{0}K^{-} decay is determined from the data. The ratio of the SS- and DD-wave amplitudes is found to be 1.11±0.15±0.061.11\pm0.15\pm 0.06 and its phase 0.70±0.09±0.040.70\pm0.09\pm 0.04 rad, where the first uncertainty is statistical and the second systematic.Comment: All figures and tables, along with machine-readable versions and any supplementary material and additional information, are available at https://cern.ch/lhcbproject/Publications/p/LHCb-PAPER-2023-014.html (LHCb public pages
    corecore