38 research outputs found

    Palladium Nanoparticles Loaded on Carbon Modified TiO2 Nanobelts for Enhanced Methanol Electrooxidation

    Get PDF
    Made available based on the terms of the Springer open license. Publication available at Springer via http://dx.doi.org/10.5101/nml.v5i3.p202-212Carbon modified TiO2 nanobelts (TiO2-C) were synthesized using a hydrothermal growth method, as a support material for palladium (Pd) nanoparticles (Pd/TiO2-C) to improve the electrocatalytic performance for methanol electrooxidation by comparison to Pd nanoparticles on bare TiO2 nanobelts (Pd/TiO2) and activated carbon (Pd/AC). Cyclic voltammetry characterization was conducted with respect to saturated calomel electrode (SCE) in an alkaline methanol solution, and the results indicate that the specific activity of Pd/TiO2-C is 2.2 times that of Pd/AC and 1.5 times that of Pd/TiO2. Chronoamperometry results revealed that the TiO2-C support was comparable in stability to activated carbon; but possesses an enhanced current density for methanol oxidation at a potential of -0.2 V vs. SCE. The current study demonstrates the potential of Pd nanoparticle loaded on hierarchical TiO2-C nanobelts for electrocatalytic applications such as fuel cells and batteries.FedDev Ontario through the Applied Research and Commercialization (ARC) InitiativeNatural Sciences and Engineering Research Council of Canada (NSERC) programMicrobonds, Inc

    A global experiment on motivating social distancing during the COVID-19 pandemic

    Get PDF
    Finding communication strategies that effectively motivate social distancing continues to be a global public health priority during the COVID-19 pandemic. This crosscountry, preregistered experiment (n = 25,718 from 89 countries) tested hypotheses concerning generalizable positive and negative outcomes of social distancing messages that promoted personal agency and reflective choices (i.e., an autonomy-supportive message) or were restrictive and shaming (i.e., a controlling message) compared with no message at all. Results partially supported experimental hypotheses in that the controlling message increased controlled motivation (a poorly internalized form of motivation relying on shame, guilt, and fear of social consequences) relative to no message. On the other hand, the autonomy-supportive message lowered feelings of defiance compared with the controlling message, but the controlling message did not differ from receiving no message at all. Unexpectedly, messages did not influence autonomous motivation (a highly internalized form of motivation relying on one's core values) or behavioral intentions. Results supported hypothesized associations between people's existing autonomous and controlled motivations and self-reported behavioral intentions to engage in social distancing. Controlled motivation was associated with more defiance and less long-term behavioral intention to engage in social distancing, whereas autonomous motivation was associated with less defiance and more short- and long-term intentions to social distance. Overall, this work highlights the potential harm of using shaming and pressuring language in public health communication, with implications for the current and future global health challenges

    Characterization of carbon cryogel synthesized by sol-gel polycondensation and freeze-drying

    No full text
    Resorcinol-formaldehyde (RF) cryogels were synthesized by sol-gel polycondensation of resorcinol with formaldehyde and freeze-drying was carried out with t-butanol. Carbon cryogels were obtained by pyrolyzing RF cryogels in an inert atmosphere. Characterization by nitrogen adsorption showed that carbon cryogels were micro and mesoporous materials with high surface areas (500 m(2)/g LT S-BET LT 750 m(2)/g). Cyclic voltammetry experiments at various scan rates (2-200 mV s(-1)) have been performed to study the electrical double-layer charging of carbon cryogel electrodes in 0.5 mol dm(-3) HClO4 solution. It has been demonstrated that it is possible to divide further total specific capacitance into mesoporous and microporous specific capacitance by analyzing the linear dependence of the specific capacitance (C) on the reciprocal of the square root of the potential scan rate (v(-1/2)), and linear dependence of the reciprocal specific charge (1/C) on the square root of the potential scan rate (v(1/2)). (C) 2004 Elsevier Ltd. All rights reserved

    Oxygen reduction at platinum nanoparticles supported on carbon cryogel in alkaline solution

    Get PDF
    The oxygen reduction reaction was investigated in 0.1 M NaOH solution, on a porous coated electrode formed of Pt particles supported on carbon cryogel. The Pt/C catalyst was characterized by the X-ray diffraction (XRD), transmission electron microscopy (TEM) and cyclic voltammetry techniques. The results demonstrated a successful reduction of Pt to metallic form and homogenous Pt particle size distribution with a mean particle size of about 2.7 nm. The ORR kinetics was investigated by linear sweep polarization at a rotating disc electrode. The results showed the existence of two E - log j regions, usually referred to polycrystalline Pt in acid and alkaline solution. At low Current densities (led), the Tafel slope was found to be close to -2.3RT/F, while at high current densities (bed) it was found to be close to -2x2.3RT/F. It is proposed that the main path in the ORR mechanism on Pt particles was the direct four-electron process, with the transfer of the first electron as the rate determining step. If the activities are expressed through the specific current densities, a small enhancement of the catalytic activity for Pt/C was observed compared to that of polycrystalline Pt. The effect of the Pt particle size on the electrocatalysis of oxygen reduction was ascribed to the predominant (111) facets of the platinum crystallites

    Specificity of the UPD of H to the structure of highly dispersed Pt on carbon support

    No full text
    Home-made carbon cryogel synthesized by sol-gel polycondensation and freeze-drying is used as support for preparation of highly dispersed Pt catalyst that is made by a modified polyol synthesis method in an ethylene glycol (EG) solution. Specific surface area of carbon support and Pt/C catalyst is determined from nitrogen adsorption isotherm. The adsorption isotherm demonstrates a significant mesoporosity of carbon support. Specific surface area of the carbon support, calculated by the BET equation, is found to be 573 m(2) g(-1). X-ray diffraction (XRD) results demonstrate a successful reduction of the Pt precursor to its metallic form, and transmission electron microscopy (TEM) images show very uniform Pt particle size distribution with mean particle size of about 2.7 +/- 0.7 nm of the catalyst. Potentiodynamic studies of the underpotential deposition of hydrogen (H-upd) on Pt/C electrode in 0.5 mol dm(-3) HClO4 aqueous solution in the temperature range from 274 to 318 K are made, and thermodynamic state functions for the hydrogen adsorption are determined. The experimental results are analyzed assuming linear variation of the Gibbs energy of adsorption versus theta H-upd on the basis of the surface heterogeneity. The increase of Delta G(Hupd)(theta) with the surface coverage indicates the repulsive interactions between H-upd adatoms. From the temperature dependence of the Gibbs energy of adsorption, the enthalpy and the entropy of adsorption are calculated. The values of these functions are determined to be Delta H-Hupd(theta=0) = -5.6 kJ mol(-1) and Delta S-Hupd(theta=0) = 69.1 J mol(-1) K-1 The value of Delta H-Hupd(theta) allows determinations of the bond energy between electrode surface and H-upd that is found to be Ept-H = 223 kJ mol(-1) for theta = 0. (c) 2006 International Association for Hydrogen Energy. Published by Elsevier Ltd. All rights reserved

    Synthesis, characterization and electrocatalytical behavior of Nb-TiO2/Pt nanocatalyst for oxygen reduction reaction

    No full text
    In order to point out the effect of the support to the catalyst for oxygen reduction reaction nano-crystalline Nb-doped TiO2 was synthesized through a modified sol-gel route procedure. The specific surface area of the support, S-BET, and pore size distribution, were calculated from the adsorption isotherms using the gravimetric McBain method. The support was characterized by X-ray diffraction (XRD) technique. The borohydride reduction method was used to prepare Nb-TiO2 supported Pt (20 wt.%) catalyst. The synthesized catalyst was analyzed by TEM technique. Finally, the catalytic activity of this new catalyst for oxygen reduction reaction was investigated in acid solution, in the absence and the presence of methanol, and its activity was compared towards the results on C/Pt catalysts. Kinetic analysis reveals that the oxygen reduction reaction on Nb-TiO2/Pt catalyst follows four-electron process leading to water, as in the case of C/Pt electrode, but the Tafel plots normalized to the electrochemically active surface area show very remarkable enhancement in activity of Nb-TiO2/Pt expressed through the value of the current density at the constant potential. Moreover, Nb-TiO2/Pt catalyst exhibits higher methanol tolerance during the oxygen reduction reaction than the C/Pt catalyst. The enhancement in the activity of Nb-TiO2/Pt is consequence of both: the interactions of Pt nanoparticles with the support and the energy shift of the surface d-states with respect to the Fermi level what changes the surface reactivity. (C) 2010 Elsevier B.V. All rights reserved
    corecore