17 research outputs found

    Scaffolding proteins in G-protein signaling

    Get PDF
    Heterotrimeric G proteins are ubiquitous signaling partners of seven transmembrane-domain G-protein-coupled receptors (GPCRs), the largest (and most important pharmacologically) receptor family in mammals. A number of scaffolding proteins have been identified that regulate various facets of GPCR signaling. In this review, we summarize current knowledge concerning those scaffolding proteins that are known to directly bind heterotrimeric G proteins, and discuss the composition of the protein complexes they assemble and their effects on signal transduction. Emerging evidence about possible ways of regulation of activity of these scaffolding proteins is also discussed

    Novel Mechanisms of G Protein-Dependent Regulation of Endothelial Nitric-Oxide Synthase

    No full text
    ABSTRACT Endothelial nitric-oxide synthase (eNOS) plays a crucial role in the regulation of a variety of cardiovascular and pulmonary functions in both normal and pathological conditions. Multiple signaling inputs, including calcium, caveolin-1, phosphorylation by several kinases, and binding to the 90-kDa heat shock protein (Hsp90), regulate eNOS activity. Here, we report a novel mechanism of G protein-dependent regulation of eNOS. We demonstrate that in mammalian cells, the ā£ subunit of heterotrimeric G12 protein (Gā£ 12 ) can form a complex with eNOS in an activation-and Hsp90-independent manner. Our data show that Gā£ 12 does not affect eNOS-specific activity, but it strongly enhances total eNOS activity by increasing cellular levels of eNOS. Experiments using inhibition of protein or mRNA synthesis show that Gā£ 12 increases the expression of eNOS by increasing half-life of both eNOS protein and eNOS mRNA. Small interfering RNA-mediated depletion of endogenous Gā£ 12 decreases eNOS levels. A quantitative correlation can be detected between the extent of down-regulation of Gā£ 12 and eNOS in endothelial cells after prolonged treatment with thrombin. G protein-dependent increase of eNOS expression represents a novel mechanism by which heterotrimeric G proteins can regulate the activity of downstream signaling molecules

    GĪ± 13

    No full text

    Zyxin is involved in thrombin signaling via interaction with PAR-1 receptor

    No full text
    Protease-activated receptor 1 (PAR-1) mediates thrombin signaling in human endothelial cells. As a G-protein-coupled receptor, PAR-1 transmits thrombin signal through activation of the heterotrimeric G proteins, Gi, Gq, and G12/13. In this study, we demonstrated that zyxin, a LIM-domain-containing protein, is involved in thrombin-mediated actin cytoskeleton remodeling and serum response element (SRE)-dependent gene transcription. We determined that zyxin binds to the C-terminal domain of PAR-1, providing a possible mechanism of involvement of zyxin as a signal transducer in PAR-1 signaling. Data showing that disruption of PAR-1-zyxin interaction inhibited thrombin-induced stress fiber formation and SRE activation supports this hypothesis. Similarly, depletion of zyxin using siRNA inhibited thrombin-induced actin stress fiber formation and SRE-dependent gene transcription. In addition, depletion of zyxin resulted in delay of endothelial barrier restoration after thrombin treatment. Notably, down-regulation of zyxin did not affect thrombin-induced activation of RhoA or Gi, Gq, and G12/13 heterotrimeric G proteins, implicating a novel signaling pathway regulated by PAR-1 that is not mediated by G-proteins. The observation that zyxin targets VASP, a partner of zyxin in regulation of actin assembly and dynamics, to focal adhesions and along stress fibers on thrombin stimulation suggests that zyxin may participate in thrombin-induced cytoskeletal remodeling through recruitment of VASP. In summary, this study establishes a crucial role of zyxin in thrombin signaling in endothelial cells and provides evidence for a novel PAR-1 signaling pathway mediated by zyxin.ā€”Han, J., Liu, G., Profirovic, J., Niu, J., Voyno-Yasenetskaya, T. Zyxin is involved in thrombin signaling via interaction with PAR-1 receptor
    corecore