132 research outputs found

    Identification of plastic constitutive parameters at large deformations from three dimensional displacement fields

    Get PDF
    The aim of this paper is to provide a general procedure to extract the constitutive parameters of a plasticity model starting from displacement measurements and using the Virtual Fields Method. This is a classical inverse problem which has been already investigated in the literature, however several new features are developed here. First of all the procedure applies to a general three-dimensional displacement field which leads to large plastic deformations, no assumptions are made such as plane stress or plane strain although only pressure-independent plasticity is considered. Moreover the equilibrium equation is written in terms of the deviatoric stress tensor that can be directly computed from the strain field without iterations. Thanks to this, the identification routine is much faster compared to other inverse methods such as finite element updating. The proposed method can be a valid tool to study complex phenomena which involve severe plastic deformation and where the state of stress is completely triaxial, e.g. strain localization or necking occurrence. The procedure has been validated using a three dimensional displacement field obtained from a simulated experiment. The main potentialities as well as a first sensitivity study on the influence of measurement errors are illustrated

    A model for predicting grain boundary cracking in polycrystalline viscoplastic materials including scale effects

    Full text link
    A model is developed herein for predicting the mechanical response of inelastic crystalline solids. Particular emphasis is given to the development of microstructural damage along grain boundaries, and the interaction of this damage with intragranular inelasticity caused by dislocation dissipation mechanisms. The model is developed within the concepts of continuum mechanics, with special emphasis on the development of internal boundaries in the continuum by utilizing a cohesive zone model based on fracture mechanics. In addition, the crystalline grains are assumed to be characterized by nonlinear viscoplastic mechanical material behavior in order to account for dislocation generation and migration. Due to the nonlinearities introduced by the crack growth and viscoplastic constitution, a numerical algorithm is utilized to solve representative problems. Implementation of the model to a finite element computational algorithm is therefore briefly described. Finally, sample calculations are presented for a polycrystalline titanium alloy with particular focus on effects of scale on the predicted response

    Size effects in nanoindentation: an experimental and analytical study

    Get PDF
    This work addresses the size effect encountered in nanoindentation experiments. It is generally referred to as the indentation size effect (ISE). Classical descriptions of the ISE show a decrease in hardness for increasing indentation depth. Recently new experiments have shown that after the initial decrease, hardness increases with increasing indentation depth. After this increase, finally the hardness decreases with increasing indentation. This work reviews the existing theories describing the ISE and presents new formulations that incorporate the hardening effect into the ISE. Furthermore, indentation experiments have been performed on several metal samples, to see whether the hardening effect was an anomaly or not. Finally, numerical simulations are performed using the commercial program ABAQUS
    • 

    corecore