466 research outputs found
Contrasting partition behavior of F and Cl during hydrous mantle melting: implications for Cl/F signature in arc magmas
International audienceWe present the results of five experiments on F and Cl partitioning during hydrous mantle melting under conditions relevant to subduction zone magmatism (1.2–2.5 GPa, 1,180°C–1,430°C). For each experiment, we determined the F and Cl partition coefficients between lherzolitic mineral phases (olivine, orthopyroxene (opx), clinopyroxene (cpx), and garnet), amphibole, and hydrous basaltic melts (0.2–5.9 wt.% dissolved H2O). At constant pressure, View MathML show contrasting response to the combined effects of decreasing temperature from 1,310°C to 1,180°C and increasing H2O content in the melt from 0.2 to 5.9 wt.%: View MathML. decreases from 0.123 ± 0.004 to 0.021 ± 0.014 while View MathML increases from 0.0021 ± 0.0031 to 0.07 ± 0.01. Similar results are observed for clinopyroxene: View MathML decreases from 0.153 ± 0.004 to 0.083 ± 0.004 while View MathML increases from 0.009 ± 0.0005 to 0.015 ± 0.0008. Experimentally determined F and Cl partition coefficients were used in a hydrous melting model of a lherzolitic mantle metasomatized by slab fluid. In this model, we vary the amount of metasomatic slab fluid added into the mantle while its composition is kept constant. Increasing the amount of fluid results in an increase of both the degree of melting (due to the effect of H2O addition) and the F and Cl input in the mantle wedge. Because of the change of F and Cl partition coefficients with the increase of H2O, the observed variation in the F and Cl contents of the modeled melts is produced not only by F and Cl input from the fluid, but also by the changes in F and Cl fractionation during hydrous melting. Overall, the model predicts that the Cl/F ratio of modeled melts increases with increasing fluid fraction. Therefore, a variation in the amount of fluid added to the mantle wedge can contribute to the variability in Cl/F ratios observed in arc melt inclusions
The nanoSIMS as a tool to study zonation around/in melt inclusions
Melt inclusions preserve geochemical records of magmatic
processes and can provide windows into melt composition
prior to near-surface fractionation processes such as
degassing, crystal fractionation, and mixing that can influence
the compositions of erupted magmas. The compositions of
melt inclusions are usually measured near their centers using
in-situ analytical techniques such as electron microprobe, ion
probe, or LA-ICPMS. However, melt inclusions can
experience post-entrapment modifications through
crystallization or exchange with the host mineral or the outside
melt via diffusion through the host mineral. For example, water
loss (or gain) can occur by diffusion of H-bearing species
through the host mineral toward (or from) the enclosing melt.
Zonation in melt inclusions and their host minerals provide
information on such post-entrapment modifications. We
present a new approach to the study of such zonation using
the nanoSIMS Cameca 50L high-resolution ion microprobe.
Our data document mechanisms of chemical evolution of melt
inclusion after entrapment and can constrain the nature and
timescales of syn-eruptive processes
Autoantibodies neutralizing type I IFNs are present in ~ 4% of uninfected individuals over 70 years old and account for ~ 20% of COVID-19 deaths.
Circulating autoantibodies (auto-Abs) neutralizing high concentrations (10 ng/mL, in plasma diluted 1 to 10) of IFN-α and/or -ω are found in about 10% of patients with critical COVID-19 pneumonia, but not in subjects with asymptomatic infections. We detect auto-Abs neutralizing 100-fold lower, more physiological, concentrations of IFN-α and/or -ω (100 pg/mL, in 1/10 dilutions of plasma) in 13.6% of 3,595 patients with critical COVID-19, including 21% of 374 patients > 80 years, and 6.5% of 522 patients with severe COVID-19. These antibodies are also detected in 18% of the 1,124 deceased patients (aged 20 days-99 years; mean: 70 years). Moreover, another 1.3% of patients with critical COVID-19 and 0.9% of the deceased patients have auto-Abs neutralizing high concentrations of IFN-β. We also show, in a sample of 34,159 uninfected subjects from the general population, that auto-Abs neutralizing high concentrations of IFN-α and/or -ω are present in 0.18% of individuals between 18 and 69 years, 1.1% between 70 and 79 years, and 3.4% >80 years. Moreover, the proportion of subjects carrying auto-Abs neutralizing lower concentrations is greater in a subsample of 10,778 uninfected individuals: 1% of individuals 80 years. By contrast, auto-Abs neutralizing IFN-β do not become more frequent with age. Auto-Abs neutralizing type I IFNs predate SARS-CoV-2 infection and sharply increase in prevalence after the age of 70 years. They account for about 20% of both critical COVID-19 cases in the over-80s, and total fatal COVID-19 cases
Volatile and major element zonation within melt inclusions: A natural diffusion experiment
The diffusivities of volatile elements in silicate melts significantly impact petrological processes [e.g. 1, 2].
Although many studies of volatile diffusion in silicic melts have been undertaken, there have been few studies in basaltic melts [e.g. 3], and most of these have concentrated on the diffusion of only one or two elements in each experiment
Tumour inflammatory infiltrate predicts survival following curative resection for node-negative colorectal cancer
<b>Background</b>: A pronounced tumour inflammatory infiltrate is known to confer a good outcome in colorectal cancer. Klintrup and colleagues reported a structured assessment of the inflammatory reaction at the invasive margin scoring low grade or high grade. The aim of the present study was to examine the prognostic value of tumour inflammatory infiltrate in node-negative colorectal cancer.
<b>Methods</b>: Two hundred patients had undergone surgery for node-negative colorectal cancer between 1997 and 2004. Specimens were scored with Jass’ and Klintrup’s criteria for peritumoural infiltrate. Pathological data were taken from the reports at that time.
<b>Results</b>: Low-grade inflammatory infiltrate assessed using Klintrup’s criteria was an independent prognostic factor in node-negative disease. In patients with a low-risk Petersen Index (n = 179), low-grade infiltrate carried a threefold increased risk of cancer death. Low-grade infiltrate was related to increasing T stage and an infiltrating margin.
<b>Conclusion</b>: Assessment of inflammatory infiltrate using Klintrup’s criteria provides independent prognostic information on node-negative colorectal cancer. A high-grade local inflammatory response may represent effective host immune responses impeding tumour growth
Chemical zonation in olivine-hosted melt inclusions
Significant zonation in major, minor, trace, and volatile elements has been documented in naturally glassy olivine-hosted melt inclusions from the Siqueiros Fracture Zone and the Galapagos Islands. Components with a higher concentration in the host olivine than in the melt (e.g., MgO, FeO, Cr_2O_3, and MnO) are depleted at the edges of the zoned melt inclusions relative to their centers, whereas except for CaO, H_2O, and F, components with a lower concentration in the host olivine than in the melt (e.g., Al_2O_3, SiO_2, Na_2O, K_2O, TiO_2, S, and Cl) are enriched near the melt inclusion edges. This zonation is due to formation of an olivine-depleted boundary layer in the adjacent melt in response to cooling and crystallization of olivine on the walls of the melt inclusions, concurrent with diffusive propagation of the boundary layer toward the inclusion center. Concentration profiles of some components in the melt inclusions exhibit multicomponent diffusion effects such as uphill diffusion (CaO, FeO) or slowing of the diffusion of typically rapidly diffusing components (Na_2O, K_2O) by coupling to slow diffusing components such as SiO_2 and Al_2O_3. Concentrations of H_2O and F decrease toward the edges of some of the Siqueiros melt inclusions, suggesting either that these components have been lost from the inclusions into the host olivine late in their cooling histories and/or that these components are exhibiting multicomponent diffusion effects. A model has been developed of the time-dependent evolution of MgO concentration profiles in melt inclusions due to simultaneous depletion of MgO at the inclusion walls due to olivine growth and diffusion of MgO in the melt inclusions in response to this depletion. Observed concentration profiles were fit to this model to constrain their thermal histories. Cooling rates determined by a single-stage linear cooling model are 150–13,000 °C h^(−1) from the liquidus down to ~1,000 °C, consistent with previously determined cooling rates for basaltic glasses; compositional trends with melt inclusion size observed in the Siqueiros melt inclusions are described well by this simple single-stage linear cooling model. Despite the overall success of the modeling of MgO concentration profiles using a single-stage cooling history, MgO concentration profiles in some melt inclusions are better fit by a two-stage cooling history with a slower-cooling first stage followed by a faster-cooling second stage; the inferred total duration of cooling from the liquidus down to ~1,000 °C ranges from 40 s to just over 1 h. Based on our observations and models, compositions of zoned melt inclusions (even if measured at the centers of the inclusions) will typically have been diffusively fractionated relative to the initially trapped melt; for such inclusions, the initial composition cannot be simply reconstructed based on olivine-addition calculations, so caution should be exercised in application of such reconstructions to correct for post-entrapment crystallization of olivine on inclusion walls. Off-center analyses of a melt inclusion can also give results significantly fractionated relative to simple olivine crystallization. All melt inclusions from the Siqueiros and Galapagos sample suites exhibit zoning profiles, and this feature may be nearly universal in glassy, olivine-hosted inclusions. If so, zoning profiles in melt inclusions could be widely useful to constrain late-stage syneruptive processes and as natural diffusion experiments
Zonation of H_(2)O and F Concentrations around Melt Inclusions in Olivines
Studies of both naturally quenched and experimentally reheated melt inclusions have established that they can lose or gain H_(2)O after entrapment in their host mineral, before or during eruption. Here we report nanoSIMS analyses of H2O, Cl and F in olivine around melt inclusions from two natural basaltic samples: one from the Sommata cinder cone on Vulcano Island in the Aeolian arc and the other from the Jorullo cinder cone in the Trans-Mexican Volcanic Belt. Our results constrain olivine/basaltic melt partition coefficients and allow assessment of mechanisms of volatile loss from melt inclusions in natural samples. Cl contents in olivine from both samples are mostly below detection limits (≤0·03 ± 0·01 ppm), with no detectable variation close to the melt inclusions. Assuming a maximum Cl content of 0·03 ppm for all olivines, maximum estimates for Cl partition coefficients between olivine and glass are 0·00002 ± 0·00002. Olivines from the two localities display contrasting H_(2)O and F compositions: Sommata olivines contain 27 ± 11 ppm H_(2)O and 0·28 ± 0·07 ppm F, whereas Jorullo olivines have lower and proportionately more variable H_(2)O and F (11 ± 12 ppm and 0·12 ± 0·09 ppm, respectively; uncertainties are two standard deviations for the entire population). The variations of H_(2)O and F contents in the olivines exhibit clear zonation patterns, increasing with proximity to melt inclusions. This pattern was most probably generated during transfer of volatiles out of the inclusions through the host olivine. H_(2)O concentration gradients surrounding melt inclusions are roughly concentric, but significantly elongated parallel to the crystallographic a-axis of olivine. Because of this preferential crystallographic orientation, this pattern is consistent with H_(2)O loss that is rate-limited by the ‘proton–polaron’ mechanism of H diffusion in olivine. Partition coefficients based on olivine compositions immediately adjacent to melt inclusions are 0·0007 ± 0·0003 for H_(2)O and 0·0005 ± 0·0003 for F. The H_(2)O and F diffusion profiles most probably formed in response to a decrease in the respective fugacities in the external melt, owing to either degassing or mixing with volatile-poor melt. Volatile transport out of inclusions might also have been driven in part by increases in the fugacity within the inclusion owing to post-entrapment crystallization. In the case of F, because of the lack of data on F diffusion in olivine, any interpretation of the measured F gradients is speculative. In the case of H_(2)O, we model the concentration gradients using a numerical model of three-dimensional anisotropic diffusion of H, where initial conditions include both H2O decrease in the external melt and post-entrapment enrichment of H_(2)O in the inclusions. The model confirms that external degassing is the dominant driving force, showing that the orientation of the anisotropy in H diffusion is consistent with the proton–polaron diffusion mechanism in olivine. The model also yields an estimate of the initial H_(2)O content of the Sommata melt inclusions before diffusive loss of 6 wt % H_(2)O. The findings provide new insights on rapid H_(2)O loss during magma ascent and improve our ability to assess the fidelity of the H_(2)O record from melt inclusions
Higher COVID-19 pneumonia risk associated with anti-IFN-α than with anti-IFN-ω auto-Abs in children
COVID-19; Immunodeficiency; Infectious diseaseCOVID-19; Inmunodeficiencia; Enfermedad infecciosaCOVID-19; Immunodeficiència; Malaltia infecciosaWe found that 19 (10.4%) of 183 unvaccinated children hospitalized for COVID-19 pneumonia had autoantibodies (auto-Abs) neutralizing type I IFNs (IFN-α2 in 10 patients: IFN-α2 only in three, IFN-α2 plus IFN-ω in five, and IFN-α2, IFN-ω plus IFN-β in two; IFN-ω only in nine patients). Seven children (3.8%) had Abs neutralizing at least 10 ng/ml of one IFN, whereas the other 12 (6.6%) had Abs neutralizing only 100 pg/ml. The auto-Abs neutralized both unglycosylated and glycosylated IFNs. We also detected auto-Abs neutralizing 100 pg/ml IFN-α2 in 4 of 2,267 uninfected children (0.2%) and auto-Abs neutralizing IFN-ω in 45 children (2%). The odds ratios (ORs) for life-threatening COVID-19 pneumonia were, therefore, higher for auto-Abs neutralizing IFN-α2 only (OR [95% CI] = 67.6 [5.7–9,196.6]) than for auto-Abs neutralizing IFN-ω only (OR [95% CI] = 2.6 [1.2–5.3]). ORs were also higher for auto-Abs neutralizing high concentrations (OR [95% CI] = 12.9 [4.6–35.9]) than for those neutralizing low concentrations (OR [95% CI] = 5.5 [3.1–9.6]) of IFN-ω and/or IFN-α2.The Laboratory of Human Genetics of Infectious Diseases is supported by the Howard Hughes Medical Institute, the Rockefeller University, the St. Giles Foundation, the National Institutes of Health (NIH) (R01AI088364, R01AI163029, and R21AI160576), the National Center for Advancing Translational Sciences, the NIH Clinical and Translational Science Award program (UL1TR001866), the Fisher Center for Alzheimer’s Research Foundation, the Meyer Foundation, the JPB Foundation, the Stavros Niarchos Foundation Institute for Global Infectious Disease Research, the program “Investissement d’Avenir” launched by the French Government and implemented by the Agence Nationale de la Recherche (ANR) (ANR-10-IAHU-01), the Integrative Biology of Emerging Infectious Diseases Laboratory of Excellence (ANR-10-LABX-62-IBEID), the French Foundation for Medical Research (FRM) (EQU201903007798), the ANRS-COV05, ANR GENVIR (ANR-20-CE93-003), ANR AI2D (ANR-22-CE15-0046), and ANR AAILC (ANR-21-LIBA-0002) projects, the European Union’s Horizon 2020 research and innovation program under grant agreement no. 824110 (EASI-genomics), the HORIZON-HLTH-2021-DISEASE-04 program under grant agreement 01057100 (UNDINE), the ANR-RHU COVIFERON Program (ANR-21-RHUS-08), the Square Foundation, Grandir - Fonds de solidarité pour l’enfance, the Fondation du Souffle, the SCOR Corporate Foundation for Science, The French Ministry of Higher Education, Research, and Innovation (MESRI-COVID-19), Institut National de la Santé et de la Recherche Médicale (INSERM), REACTing-INSERM, the University of Paris Cité and Imagine Institute, Battersea & Bowery Advisory Group, and William E. Ford, General Atlantic’s Chairman and Chief Executive Officer, Gabriel Caillaux, General Atlantic’s Co-President, Managing Director and Head of Business in EMEA, and the General Atlantic Foundation. I. Meyts is a senior clinical researcher at FWO Vlaanderen; I. Meyts is funded by the European Research Council under HORIZON-HLTL-2021-ID: 101057100 "Undine," KU Leuven C16/18/007, and FWO grant G0B5120N (DADA2). L.D. Notarangelo and H.C. Su (members of the COVID Human Genetic Effort) were supported by the Intramural Research Program of the National Institute of Allergy and Infectious Diseases, NIH. P. Bastard was supported by the French Foundation for Medical Research (FRM, EA20170638020). P. Bastard and T. Le Voyer were supported by the MD-PhD program of the Imagine Institute (with the support of the Fondation Bettencourt-Schueller). P. Bastard was supported by the “Poste CCA-INSERM-Bettencourt” (with the support of the Fondation Bettencourt-Schueller). S. Okada was supported by MEXT/JSPS KAKENHI (grant numbers 22H03041 and 22KK0113) and AMED (grant numbers JP21fk0108436 and JP22fk0108514). L.I. Gonzalez-Granado is supported by the Instituto de Salud Carlos III (ISCIII) through the project FIS-PI21/01642 and cofunded by the European Union. D.C. Vinh is supported by a Fonds de Recherche du Québec - Santé, Senior Clinician-Scientist scholar award. Q. Pan-Hammarström was funded by the Swedish Research Council, and the Knut and Alice Wallenberg Foundation. K. Kisand’s laboratory was funded by the Estonian Research Council grants PRG1117 and PRG1428. This study also received support from ISCIII (TRINEO: PI22/00162; DIAVIR: DTS19/00049; Resvi-Omics: PI19/01039 [A. Salas]; ReSVinext: PI16/01569 [F. Martinón-Torres]; Enterogen: PI19/01090 [F. Martinón-Torres]); OMI-COVI-VAC (PI22/00406 [F. Martinón-Torres] jointly financed by FEDER), GAIN: Grupos con Potencial de Crecimiento (IN607B 2020/08 [A. Salas]); ACIS: BI-BACVIR (PRIS-3 [A. Salas]), and CovidPhy (SA 304 C [A. Salas]); and consorcio Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CB21/06/00103; F. Martinón-Torres); GEN-COVID (IN845D 2020/23, F. Martinón-Torres) and Grupos de Referencia Competitiva (IIN607A2021/05, F. Martinón-Torres). The study was funded by ISCIII (COV20_01333, COV20_01334, PI16/00759, PI18/00223, PI19/00208, PI20/00876, and PI21/00211), the Spanish Ministry of Science and Innovation (RTC-2017-6471-1; AEI/FEDER, EU), the Fundación Canaria Instituto de Investigación Sanitaria de Canarias (FIISC19/43, PIFIISC22/27), Grupo DISA (OA18/017), Fundación MAPFRE Guanarteme (OA21/131), Cabildo Insular de Tenerife (CGIEU0000219140 and “Apuestas científicas del ITER para colaborar en la lucha contra la COVID-19”). A. Pujol is supported by ACCI20-759 CIBERER, H2020 Marató TV3 COVID 2021-31-33, the HORIZON-HLTH-2021-ID: 101057100 (UNDINE), the Horizon 2020 program under grant no. 824110 (EasiGenomics grant no. COVID-19/PID12342), and the CERCA Program/Generalitat de Catalunya. This research is supported by the European Reference Network for Rare Immunodeficiency, Autoinflammatory and Autoimmune Diseases. Open Access funding provided by Rockefeller University
- …