12 research outputs found
PKD1 and PKD2 mutations in Slovenian families with autosomal dominant polycystic kidney disease
BACKGROUND: Autosomal dominant polycystic kidney disease (ADPKD) is a genetically heterogeneous disorder caused by mutations in at least two different loci. Prior to performing mutation screening, if DNA samples of sufficient number of family members are available, it is worthwhile to assign the gene involved in disease progression by the genetic linkage analysis. METHODS: We collected samples from 36 Slovene ADPKD families and performed linkage analysis in 16 of them. Linkage was assessed by the use of microsatellite polymorphic markers, four in the case of PKD1 (KG8, AC2.5, CW3 and CW2) and five for PKD2 (D4S1534, D4S2929, D4S1542, D4S1563 and D4S423). Partial PKD1 mutation screening was undertaken by analysing exons 23 and 31–46 and PKD2 . RESULTS: Lod scores indicated linkage to PKD1 in six families and to PKD2 in two families. One family was linked to none and in seven families linkage to both genes was possible. Partial PKD1 mutation screening was performed in 33 patients (including 20 patients from the families where linkage analysis could not be performed). We analysed PKD2 in 2 patients where lod scores indicated linkage to PKD2 and in 7 families where linkage to both genes was possible. We detected six mutations and eight polymorphisms in PKD1 and one mutation and three polymorphisms in PKD2. CONCLUSION: In our study group of ADPKD patients we detected seven mutations: three frameshift, one missense, two nonsense and one putative splicing mutation. Three have been described previously and 4 are novel. Three newly described framesfift mutations in PKD1 seem to be associated with more severe clinical course of ADPKD. Previously described nonsense mutation in PKD2 seems to be associated with cysts in liver and milder clinical course
Panels of cytokines and other secretory proteins as potential biomarkers of ovarian endometriosis.
Endometriosis is a gynecologic disease that is characterized by nonspecific symptoms and invasive diagnostics. To date, there is no adequate noninvasive method for the diagnosis of endometriosis. Although more than 100 potential biomarkers have been investigated in blood and/or peritoneal fluid, none of these has proven useful in clinical practice. The aim to find a suitable panel of biomarkers that would allow noninvasive diagnosis thus remains of interest. We evaluated the concentrations of 16 cytokines and other secretory proteins in serum and peritoneal fluid of 58 women with ovarian endometriosis (cases) and 40 healthy women undergoing sterilization or patients with benign ovarian cysts (controls) using multiplexed double fluorescence-based immunometric assay platform and enzyme-linked immunosorbent assay. Significantly higher concentrations of glycodelin-A were shown in serum, and significantly higher levels of glycodelin-A, IL-6, and IL-8, and lower levels of leptin were measured in the peritoneal fluid of cases versus controls. In serum, the best performance was shown by models that included the ratio of leptin/glycodelin-A and the ratio of ficolin 2/glycodelin-A, whereas in the peritoneal fluid the best models included the ratio of biglycan/leptin, regulated on activation normal T-cell expressed and secreted/IL-6 and ficolin-2/glycodelin-A, and IL-8 per milligram of total protein, all in combination with age. The models using serum and peritoneal fluid distinguished between ovarian endometriosis patients and controls regardless of the menstrual cycle phase with relatively high sensitivity (72.5% to 84.2%), specificity (78.4% to 91.2%), and area under the curve (0.85 to 0.90)
Elevated glycodelin-A concentrations in serum and peritoneal fluid of women with ovarian endometriosis
The aim of this study was to evaluate serum and peritoneal fluid (PF) glycodelin-A concentrations in women with ovarian endometriosis. Ninety-nine matched pairs of serum and PF samples were included in our study. The case group comprised 57 women with ovarian endometriosis and the control group 42 healthy women undergoing sterilization or patients with benign ovarian cysts. Glycodelin-A concentrations were measured using ELISA. Endometriosis patients had significantly higher serum and PF glycodelin-A concentrations compared to controls, and this increase was observed in both proliferative and secretory cycle phases. Glycodelin-A concentrations were more than 10-fold higher in PF than in serum and correlated with each other. Intensity and frequency of menstrual pain positively correlated with glycodelin-A concentrations. Sensitivity and specificity of glycodelin-A as a biomarker for ovarian endometriosis were 82.1% and 78.4% in serum, and 79.7% and 77.5% in PF, respectively. These results indicate that Glycodelin-A has a potential role as a biomarker to be used in combination with other, independent marker molecules
The Significance of the Sulfatase Pathway for Local Estrogen Formation in Endometrial Cancer
Endometrial cancer (EC) is the most common estrogen-dependent gynecological malignancy in the developed World. To investigate the local formation of estradiol (E2), we first measured the concentrations of the steroid precursor androstenedione (A-dione) and the most potent estrogen, E2, and we evaluated the metabolism of A-dione, estrone-sulfate (E1-S), and estrone (E1) in cancerous and adjacent control endometrium. Furthermore, we studied expression of the key genes for estradiol formation via the aromatase and sulfatase pathways. A-dione and E2 were detected in cancerous and adjacent control endometrium. In cancerous endometrium, A-dione was metabolized to testosterone, and no E2 was formed. Both, E1-S and E1 were metabolized to E2, with increased levels of E2 seen in cancerous tissue. There was no significant difference in expression of the key genes of the aromatase (CYP19A1) and the sulfatase (STS, HSD17B1, HSD17B2) pathways in cancerous endometrium compared to adjacent control tissue. The mRNA levels of CYP19A1 and HSD17B1 were low, and HSD17B14, which promotes inactivation of E2, was significantly down-regulated in cancerous endometrium, especially in patients with lymphovascular invasion. At the protein level, there were no differences in the levels of STS and HSD17B2 between cancerous and adjacent control tissue by Western blotting, and immunohistochemistry revealed intense staining for STS and HSD17B2, and weak staining for SULT1E1 and HSD17B1 in cancerous tissue. Our data demonstrate that in cancerous endometrium, E2 is formed from E1-S via the sulfatase pathway, and not from A-dione via the aromatase pathway