5 research outputs found

    The Heisenberg antiferromagnet on an anisotropic triangular lattice: linear spin-wave theory

    Full text link
    We consider the effect of quantum spin fluctuations on the ground state properties of the Heisenberg antiferromagnet on an anisotropic triangular lattice using linear spin-wave theory. This model should describe the magnetic properties of the insulating phase of the kappa-(BEDT-TTF)_2 X family of superconducting molecular crystals. The ground state energy, the staggered magnetization, magnon excitation spectra and spin-wave velocities are computed as a function of the ratio between the second and first neighbours, J2/J1. We find that near J2/J1 = 0.5, i.e., in the region where the classical spin configuration changes from a Neel ordered phase to a spiral phase, the staggered magnetization vanishes, suggesting the possibility of a quantum disordered state. In this region, the quantum correction to the magnetization is large but finite. This is in contrast to the frustrated Heisenberg model on a square lattice, for which the quantum correction diverges logarithmically at the transition from the Neel to the collinear phase. For large J2/J1, the model becomes a set of chains with frustrated interchain coupling. For J2 > 4 J1, the quantum correction to the magnetization, within LSW, becomes comparable to the classical magnetization, suggesting the possibility of a quantum disordered state. We show that, in this regime, quantum fluctuations are much larger than for a set of weakly coupled chains with non-frustated interchain coupling.Comment: 10 pages, RevTeX + epsf, 5 figures Replaced with published version. Comparison to series expansions energies include

    Phase diagram for a class of spin-half Heisenberg models interpolating between the square-lattice, the triangular-lattice and the linear chain limits

    Full text link
    We study the spin-half Heisenberg models on an anisotropic two-dimensional lattice which interpolates between the square-lattice at one end, a set of decoupled spin-chains on the other end, and the triangular-lattice Heisenberg model in between. By series expansions around two different dimer ground states and around various commensurate and incommensurate magnetically ordered states, we establish the phase diagram for this model of a frustrated antiferromagnet. We find a particularly rich phase diagram due to the interplay of magnetic frustration, quantum fluctuations and varying dimensionality. There is a large region of the usual 2-sublattice Ne\'el phase, a 3-sublattice phase for the triangular-lattice model, a region of incommensurate magnetic order around the triangular-lattice model, and regions in parameter space where there is no magnetic order. We find that the incommensurate ordering wavevector is in general altered from its classical value by quantum fluctuations. The regime of weakly coupled chains is particularly interesting and appears to be nearly critical.Comment: RevTeX, 15 figure

    Cooperative Jahn-Teller effect in a 2D mesoscopic C

    No full text
    Fullerene molecules adsorbed on surfaces often show macroscopic average distortions. As charged ions C60n- are known to be Jahn-Teller (JT) active, it is suggested that these distortions could be a manifestation of cooperative JT effects (CJTE) due to interactions between neighbouring fullerene ions. In order to understand the distortion properties it is necessary to take correlations between different distortions into account. However, this can’t easily be done in the mean field approximation usually used to describe the CJTE. We therefore propose an alternative procedure to describe 2D mesoscopic islands of C60 ions in which a pseudo vector spin \hbox{S→\overrightarrow{S}} is evoked to represent degenerate JT-distorted states when the quadratic JT coupling is considered. This approach is analogous to methods used for 2D magnetic systems. We then use the differential operator technique in effective field theory within the Ising approach. We include the effects of weak surface interactions and dynamic motion between equivalent distortions via terms equivalent to anisotropy and a transverse field in magnetism respectively. For distortions to D5d symmetry, we determine single site correlations as a function of temperature, the macroscopic average distortion describing a structural phase transition, and the isothermal response function. Phase diagrams are presented for relevant cases of the system parameters
    corecore