30 research outputs found

    The Dark Star of Baisun-tau: a history of cave exploration in Southern Uzbekistan, 1990–2013

    Get PDF
    Very little is known about the karst and caves in southern Uzbekistan, where some of the deepest caves in Asia have been discovered. In particular, the limestone plateau of the Baisun-tau mountain range has a tremendous potential for exploration. This region is also important for palaeoclimate studies, as it is situated in the transition zone between the Westerlies and the Indian Summer Monsoon. For more than 15 years Festival’naya Cave, now the Festival’naya–Ledopadnaya cave system, was the main focus of cavers’ attention. Then, in 2011 the great potential of Dark Star Cave was revealed, after extensive new discoveries were made. Since then, additional expeditions with international teams of cavers, led by the Ekaterinburg Speleological Club and with the support of the Speleological Association of the Urals (SAU, Russia), have continued the exploration of these unique high altitude caves of the Baisun-tau. Both the length and depth of Dark Star have been increased almost two-fold every year. So far, six entrances and 9,537m of surveyed passages have been discovered to a depth of −858m, and Dark Star has now become the focus of exploration for expeditions to the area

    Same-day diagnostic and surveillance data for tuberculosis via whole genome sequencing of direct respiratory samples

    Get PDF
    Routine full characterization of Mycobacterium tuberculosis (TB) is culture-based, taking many weeks. Whole-genome sequencing (WGS) can generate antibiotic susceptibility profiles to inform treatment, augmented with strain information for global surveillance; such data could be transformative if provided at or near point of care. We demonstrate a low-cost DNA extraction method for TB WGS direct from patient samples. We initially evaluated the method using the Illumina MiSeq sequencer (40 smear-positive respiratory samples, obtained after routine clinical testing, and 27 matched liquid cultures). M. tuberculosis was identified in all 39 samples from which DNA was successfully extracted. Sufficient data for antibiotic susceptibility prediction was obtained from 24 (62%) samples; all results were concordant with reference laboratory phenotypes. Phylogenetic placement was concordant between direct and cultured samples. Using an 70 Illumina MiSeq/MiniSeq the workflow from patient sample to results can be completed in 44/16 hours at a reagent cost of £96/£198 per sample. We then employed a non-specific PCR-based library preparation method for sequencing on an Oxford Nanopore Technologies MinION sequencer. We applied this to cultured Mycobacterium bovis BCG strain (BCG), and to combined culture negative sputum DNA and BCG DNA. For flowcell version R9.4, the estimated turnaround time from patient to identification of BCG, detection of pyrazinamide resistance, and phylogenetic placement was 7.5 hours, with full susceptibility results 5 hours later. Antibiotic susceptibility predictions were fully concordant. A critical advantage of the MinION is the ability to continue sequencing until sufficient coverage is obtained, providing a potential solution to the problem of variable amounts of M. tuberculosis in direct samples

    Antimicrobial resistance determinants are associated with Staphylococcus aureus bacteraemia and adaptation to the healthcare environment: a bacterial genome-wide association study

    Get PDF
    Staphylococcus aureus is a major bacterial pathogen in humans, and a dominant cause of severe bloodstream infections. Globally, antimicrobial resistance (AMR) in S. aureus remains challenging. While human risk factors for infection have been defined, contradictory evidence exists for the role of bacterial genomic variation in S. aureus disease. To investigate the contribution of bacterial lineage and genomic variation to the development of bloodstream infection, we undertook a genome-wide association study comparing bacteria from 1017 individuals with bacteraemia to 984 adults with asymptomatic S. aureus nasal carriage. Within 984 carriage isolates, we also compared healthcare-associated (HA) carriage with community-associated (CA) carriage. All major global lineages were represented in both bacteraemia and carriage, with no evidence for different infection rates. However, kmers tagging trimethoprim resistance-conferring mutation F99Y in dfrB were significantly associated with bacteraemia-vs-carriage (P=10-8.9-10-9.3). Pooling variation within genes, bacteraemia-vs-carriage was associated with the presence of mecA (HMP=10-5.3) as well as the presence of SCCmec (HMP=10-4.4). Among S. aureus carriers, no lineages were associated with HA-vs-CA carriage. However, we found a novel signal of HA-vs-CA carriage in the foldase protein prsA, where kmers representing conserved sequence allele were associated with CA carriage (P=10-7.1-10-19.4), while in gyrA, a ciprofloxacin resistance-conferring mutation, L84S, was associated with HA carriage (P=10-7.2). In an extensive study of S. aureus bacteraemia and nasal carriage in the UK, we found strong evidence that all S. aureus lineages are equally capable of causing bloodstream infection, and of being carried in the healthcare environment. Genomic variation in the foldase protein prsA is a novel genomic marker of healthcare origin in S. aureus but was not associated with bacteraemia. AMR determinants were associated with both bacteraemia and healthcare-associated carriage, suggesting that AMR increases the propensity not only to survive in healthcare environments, but also to cause invasive disease

    Rapid antibiotic-resistance predictions from genome sequence data for Staphylococcus aureus and Mycobacterium tuberculosis.

    Get PDF
    The rise of antibiotic-resistant bacteria has led to an urgent need for rapid detection of drug resistance in clinical samples, and improvements in global surveillance. Here we show how de Bruijn graph representation of bacterial diversity can be used to identify species and resistance profiles of clinical isolates. We implement this method for Staphylococcus aureus and Mycobacterium tuberculosis in a software package ('Mykrobe predictor') that takes raw sequence data as input, and generates a clinician-friendly report within 3 minutes on a laptop. For S. aureus, the error rates of our method are comparable to gold-standard phenotypic methods, with sensitivity/specificity of 99.1%/99.6% across 12 antibiotics (using an independent validation set, n=470). For M. tuberculosis, our method predicts resistance with sensitivity/specificity of 82.6%/98.5% (independent validation set, n=1,609); sensitivity is lower here, probably because of limited understanding of the underlying genetic mechanisms. We give evidence that minor alleles improve detection of extremely drug-resistant strains, and demonstrate feasibility of the use of emerging single-molecule nanopore sequencing techniques for these purposes

    Evolutionary Strata in a Small Mating-Type-Specific Region of the Smut Fungus Microbotryum violaceum

    No full text
    DNA sequence analysis and genetic mapping of loci from mating-type-specific chromosomes of the smut fungus Microbotryum violaceum demonstrated that the nonrecombining mating-type-specific region in this species comprises ∼25% (∼1 Mb) of the chromosome length. Divergence between homologous mating-type-linked genes in this region varies between 0 and 8.6%, resembling the evolutionary strata of vertebrate and plant sex chromosomes

    Molecular adaptation during a rapid adaptive radiation

    No full text
    Explosive adaptive radiations on islands remain one of the most puzzling evolutionary phenomena and the evolutionary genetic processes behind such radiations remain unclear. Rapid morphological and ecological evolution during island radiations suggests that many genes may be under fairly strong selection, although this remains untested. Here, we report that during a rapid recent diversification in the Hawaiian endemic plant genus Schiedea (Caryophyllaceae), 5 in 36 studied genes evolved under positive selection. Positively selected genes are involved in defence mechanisms, photosynthesis, and reproduction. Comparison with eight mainland plant groups demonstrates both the relaxation of purifying selection and more widespread positive selection in Hawaiian Schiedea. This provides compelling evidence that adaptive evolution of protein-coding genes may play a significant role during island adaptive radiations
    corecore