224 research outputs found
Accurate Determination of Conformational Transitions in Oligomeric Membrane Proteins
The structural dynamics governing collective motions in oligomeric membrane proteins play key roles in vital biomolecular processes at cellular membranes. In this study, we present a structural refinement approach that combines solid-state NMR experiments and molecular simulations to accurately describe concerted conformational transitions identifying the overall structural, dynamical, and topological states of oligomeric membrane proteins. The accuracy of the structural ensembles generated with this method is shown to reach the statistical error limit, and is further demonstrated by correctly reproducing orthogonal NMR data. We demonstrate the accuracy of this approach by characterising the pentameric state of phospholamban, a key player in the regulation of calcium uptake in the sarcoplasmic reticulum, and by probing its dynamical activation upon phosphorylation. Our results underline the importance of using an ensemble approach to characterise the conformational transitions that are often responsible for the biological function of oligomeric membrane protein states
Protein-lipid Interactions: Influence of Anchoring Groups and Buried Arginine on the Properties of Membrane-spanning Peptides
Designed transmembrane peptides were employed for investigations of protein-lipid interactions by means of oriented solid-state deuterium NMR spectroscopy using isotope-enriched alanine residues. Using the model GWALP23 sequence (GGALW(LA)6LWLAGA) as a host peptide having single interfacial tryptophan anchor residues, the effects of different guest mutations were explored. Replacements of glycine residues 2 and 22 to positively charged lysine or arginine on both termini had little influence on the peptide average orientation. Conversely, glycine to tryptophan substitutions had profound effects, manifested in the increased dynamics and altered tilt direction of the peptide. While the charged residues at the peptide termini did not cause significant changes relative to the GWALP23 sequence, leucine to arginine mutations close to the peptide center led to dramatic consequences. Thus GWALP23-R14 retained a transmembrane topology, with the orientation and dynamics largely governed by the arginine residue, while GWALP23-R12 adopted multistate behavior in DOPC, with both transmembrane and interfacial states being populated. Coarse-grained molecular dynamics simulations, performed by collaborators, yielded substantial agreement concerning the interactions among arginine, tryptophan and lipid bilayers. Further insights into the multistate behavior of GWALP23-R12 were acquired by altering the host sequence to the isomeric GW3,21ALP23, which offers a longer separation between the tryptophan anchor residues. Both the L12R and L14R mutants of this modified sequence retained transmembrane topology, suggesting that the unique arrangement of tryptophan and arginine residues in GWALP23-R12 is responsible for its multistate character. In addition to serving as a host sequence, GWALP23 itself was modified for an investigation of hydrophobic matching, by shifting the tryptophan residues outward toward the termini (GW3,21ALP23) or inward toward the center (GW7,17ALP23), leading to peptide isomers with identical amino acid composition, but different effective hydrophobic (inter-Trp) lengths. In addition to altered tilt angles, tryptophan side chain reorientation was investigated and was found to provide additional response to hydrophobic mismatch conditions. In selected cases the 2H NMR data were analyzed in conjunction with restraints from separated local-field 15N solid-state NMR spectra. The combined analysis of the 2H and 15N NMR data provided multiple constraints and proved advantageous for explicit modeling of the peptide dynamics
Π‘ΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ ΡΠ½Π΅ΡΠ³Π΅ΡΠΈΡΠ΅ΡΠΊΠΎΠΉ ΡΡΡΠ΅ΠΊΡΠΈΠ²Π½ΠΎΡΡΠΈ Π΄Π΅ΡΠΈΠ±ΡΠΈΠ»Π»ΡΡΠΈΠΎΠ½Π½ΡΡ ΠΈΠΌΠΏΡΠ»ΡΡΠΎΠ² Π½Π° Π±Π°Π·Π΅ Π³ΠΈΠΏΠΎΡΠ΅Π·Ρ Π³Π°ΡΠ°Π½ΡΠΈΡΠΎΠ²Π°Π½Π½ΠΎΠΉ Π΄Π΅ΡΠΈΠ±ΡΠΈΠ»Π»ΡΡΠΈΠΈ
The aim of this study is to compare, on the basis of the guaranteed defibrillation hypothesis, the energy efficiency of a trapezoidal defibrillation pulse with fixed rise and fall times with the main types of defibrillation pulses: truncated exponential with the tilt of 50%, rectangular and half-sine. The study was carried out using the ten TusscherβPanfilov 2006 human ventricular myocyte model subjected to simulated fibrillation in the BeatBox simulation environment. Depolarizing excitation stimuli with a high frequency were used to simulate fibrillation. The results of computer simulation based on the hypothesis of the guaranteed defibrillation showed that defibrillation pulses are energetically efficient (have low values of threshold energy of defibrillation) in a rather narrow range of phase duration values, beyond which a rapid increase in the threshold energy is observed. In terms of energy efficiency, the trapezoidal pulse with the sloping rise and fall is very close to the half-sine one, and at the same time it has a wider range of energetically effective durations.Significantly higher minimum threshold energy of guaranteed defibrillation is a characteristic of rectangular and truncated exponential pulses, while the truncated exponential pulse has a more uniform characteristic in the area of energetically effective durations. From the results obtained, it can be assumed that the maximum duration of the phases of the defibrillation pulse should be limited to the value of no more than 9ms. In this case, the nominal delivered energy at the load impedance of 175β¦ should be at least 140J. The possibility of increasing the pulse duration without a significant drop in its energy efficiency will ensure the delivery of more energy in patients with high transthoracic impedance and, accordingly, a greater probability of successful defibrillation. The above will also increase the probability of successful defibrillation in patients with defibrillation electrodes placement errors.Β Gorbunov B. B., Vostrikov V. A., Nesterenko I. V., Telyshev D. V. Comparison of the energy efficiency of defibrillation pulses based on the hypothesis of guaranteed defibrillation. Ural Radio Engineering Journal. 2021;5(4):353β368. (In Russ.) DOI: 10.15826/urej.2021.5.4.002.Π¦Π΅Π»ΡΡ Π΄Π°Π½Π½ΠΎΠ³ΠΎ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΡ ΡΠ²Π»ΡΠ΅ΡΡΡ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ Π½Π° ΠΎΡΠ½ΠΎΠ²Π΅ Π³ΠΈΠΏΠΎΡΠ΅Π·Ρ Π³Π°ΡΠ°Π½ΡΠΈΡΠΎΠ²Π°Π½Π½ΠΎΠΉ Π΄Π΅ΡΠΈΠ±ΡΠΈΠ»Π»ΡΡΠΈΠΈ ΡΠ½Π΅ΡΠ³Π΅ΡΠΈΡΠ΅ΡΠΊΠΎΠΉ ΡΡΡΠ΅ΠΊΡΠΈΠ²Π½ΠΎΡΡΠΈ Π±ΠΈΠΏΠΎΠ»ΡΡΠ½ΠΎΠ³ΠΎ ΡΡΠ°ΠΏΠ΅ΡΠ΅ΠΈΠ΄Π°Π»ΡΠ½ΠΎΠ³ΠΎ ΠΈΠΌΠΏΡΠ»ΡΡΠ° Ρ ΡΠΈΠΊΡΠΈΡΠΎΠ²Π°Π½Π½ΠΎΠΉ Π΄Π»ΠΈΡΠ΅Π»ΡΠ½ΠΎΡΡΡΡ ΡΡΠΎΠ½ΡΠ° ΠΈ ΡΡΠ΅Π·Π° Ρ ΠΎΡΠ½ΠΎΠ²Π½ΡΠΌΠΈ ΡΠΈΠΏΠ°ΠΌΠΈ Π΄Π΅ΡΠΈΠ±ΡΠΈΠ»Π»ΡΡΠΈΠΎΠ½Π½ΡΡ
ΠΈΠΌΠΏΡΠ»ΡΡΠΎΠ²: ΠΊΠ»Π°ΡΡΠΈΡΠ΅ΡΠΊΠΎΠΉ ΡΡΠ°ΠΏΠ΅ΡΠ΅ΠΈΠ΄Π°Π»ΡΠ½ΠΎΠΉ (truncated exponential) ΡΠΎ ΡΠΏΠ°Π΄ΠΎΠΌ Π²Π΅ΡΡΠΈΠ½Ρ 50%, ΠΏΡΡΠΌΠΎΡΠ³ΠΎΠ»ΡΠ½ΠΎΠΉ ΠΈ ΠΏΠΎΠ»ΡΡΠΈΠ½ΡΡΠΎΠΈΠ΄Π°Π»ΡΠ½ΠΎΠΉ. Π Π΅Π·ΡΠ»ΡΡΠ°ΡΡ ΠΊΠΎΠΌΠΏΡΡΡΠ΅ΡΠ½ΠΎΠ³ΠΎ ΠΌΠΎΠ΄Π΅Π»ΠΈΡΠΎΠ²Π°Π½ΠΈΡ Π½Π° Π±Π°Π·Π΅ Π³ΠΈΠΏΠΎΡΠ΅Π·Ρ Π³Π°ΡΠ°Π½ΡΠΈΡΠΎΠ²Π°Π½Π½ΠΎΠΉ Π΄Π΅ΡΠΈΠ±ΡΠΈΠ»Π»ΡΡΠΈΠΈ ΠΏΠΎΠΊΠ°Π·Π°Π»ΠΈ, ΡΡΠΎ Π΄Π΅ΡΠΈΠ±ΡΠΈΠ»Π»ΡΡΠΈΠΎΠ½Π½ΡΠ΅ ΠΈΠΌΠΏΡΠ»ΡΡΡ ΡΠ½Π΅ΡΠ³Π΅ΡΠΈΡΠ΅ΡΠΊΠΈ ΡΡΡΠ΅ΠΊΡΠΈΠ²Π½Ρ (ΠΈΠΌΠ΅ΡΡ Π½ΠΈΠ·ΠΊΠΈΠ΅ Π·Π½Π°ΡΠ΅Π½ΠΈΡ ΠΏΠΎΡΠΎΠ³ΠΎΠ²ΠΎΠΉ ΡΠ½Π΅ΡΠ³ΠΈΠΈ Π΄Π΅ΡΠΈΠ±ΡΠΈΠ»Π»ΡΡΠΈΠΈ) Π² Π΄ΠΎΡΡΠ°ΡΠΎΡΠ½ΠΎ ΡΠ·ΠΊΠΎΠΌ Π΄ΠΈΠ°ΠΏΠ°Π·ΠΎΠ½Π΅ Π·Π½Π°ΡΠ΅Π½ΠΈΠΉ Π΄Π»ΠΈΡΠ΅Π»ΡΠ½ΠΎΡΡΠΈ ΡΠ°Π·, Π·Π° ΠΏΡΠ΅Π΄Π΅Π»Π°ΠΌΠΈ ΠΊΠΎΡΠΎΡΠΎΠ³ΠΎ Π½Π°Π±Π»ΡΠ΄Π°Π΅ΡΡΡ Π±ΡΡΡΡΡΠΉ ΡΠΎΡΡ ΠΏΠΎΡΠΎΠ³ΠΎΠ²ΠΎΠΉ ΡΠ½Π΅ΡΠ³ΠΈΠΈ. ΠΠΎ ΡΠ½Π΅ΡΠ³Π΅ΡΠΈΡΠ΅ΡΠΊΠΎΠΉ ΡΡΡΠ΅ΠΊΡΠΈΠ²Π½ΠΎΡΡΠΈ ΡΡΠ°ΠΏΠ΅ΡΠ΅ΠΈΠ΄Π°Π»ΡΠ½ΡΠΉ ΠΈΠΌΠΏΡΠ»ΡΡ Ρ ΠΏΠΎΠ»ΠΎΠ³ΠΈΠΌΠΈ ΡΡΠΎΠ½ΡΠΎΠΌ ΠΈ ΡΡΠ΅Π·ΠΎΠΌ ΠΎΡΠ΅Π½Ρ Π±Π»ΠΈΠ·ΠΎΠΊ ΠΊ ΠΏΠΎΠ»ΡΡΠΈΠ½ΡΡΠΎΠΈΠ΄Π°Π»ΡΠ½ΠΎΠΌΡ, ΠΈ ΠΏΡΠΈ ΡΡΠΎΠΌ ΠΎΠ½ ΠΈΠΌΠ΅Π΅Ρ Π±ΠΎΠ»Π΅Π΅ ΡΠΈΡΠΎΠΊΠΈΠΉ Π΄ΠΈΠ°ΠΏΠ°Π·ΠΎΠ½ ΡΠ½Π΅ΡΠ³Π΅ΡΠΈΡΠ΅ΡΠΊΠΈ ΡΡΡΠ΅ΠΊΡΠΈΠ²Π½ΡΡ
Π΄Π»ΠΈΡΠ΅Π»ΡΠ½ΠΎΡΡΠ΅ΠΉ. Π‘ΡΡΠ΅ΡΡΠ²Π΅Π½Π½ΠΎ Π±ΠΎΠ»Π΅Π΅ Π²ΡΡΠΎΠΊΡΡ ΠΌΠΈΠ½ΠΈΠΌΠ°Π»ΡΠ½ΡΡ ΠΏΠΎΡΠΎΠ³ΠΎΠ²ΡΡ ΡΠ½Π΅ΡΠ³ΠΈΡ Π³Π°ΡΠ°Π½ΡΠΈΡΠΎΠ²Π°Π½Π½ΠΎΠΉ Π΄Π΅ΡΠΈΠ±ΡΠΈΠ»Π»ΡΡΠΈΠΈ ΠΈΠΌΠ΅ΡΡ ΠΏΡΡΠΌΠΎΡΠ³ΠΎΠ»ΡΠ½ΡΠΉ ΠΈ ΠΊΠ»Π°ΡΡΠΈΡΠ΅ΡΠΊΠΈΠΉ ΡΡΠ°ΠΏΠ΅ΡΠ΅ΠΈΠ΄Π°Π»ΡΠ½ΡΠΉ ΡΠΎ ΡΠΏΠ°Π΄ΠΎΠΌ Π²Π΅ΡΡΠΈΠ½Ρ 0,5 ΠΈΠΌΠΏΡΠ»ΡΡΡ, ΠΏΡΠΈ ΡΡΠΎΠΌ ΠΊΠ»Π°ΡΡΠΈΡΠ΅ΡΠΊΠΈΠΉ ΡΡΠ°ΠΏΠ΅ΡΠ΅ΠΈΠ΄Π°Π»ΡΠ½ΡΠΉ ΠΈΠΌΠΏΡΠ»ΡΡ ΠΈΠΌΠ΅Π΅Ρ Π±ΠΎΠ»Π΅Π΅ ΡΠ°Π²Π½ΠΎΠΌΠ΅ΡΠ½ΡΡ Ρ
Π°ΡΠ°ΠΊΡΠ΅ΡΠΈΡΡΠΈΠΊΡ Π² ΠΎΠ±Π»Π°ΡΡΠΈ ΡΠ½Π΅ΡΠ³Π΅ΡΠΈΡΠ΅ΡΠΊΠΈ ΡΡΡΠ΅ΠΊΡΠΈΠ²Π½ΡΡ
Π΄Π»ΠΈΡΠ΅Π»ΡΠ½ΠΎΡΡΠ΅ΠΉ. ΠΠ· ΠΏΠΎΠ»ΡΡΠ΅Π½Π½ΡΡ
ΡΠ΅Π·ΡΠ»ΡΡΠ°ΡΠΎΠ² ΠΌΠΎΠΆΠ½ΠΎ ΠΏΡΠ΅Π΄ΠΏΠΎΠ»ΠΎΠΆΠΈΡΡ, ΡΡΠΎ ΠΌΠ°ΠΊΡΠΈΠΌΠ°Π»ΡΠ½ΡΡ Π΄Π»ΠΈΡΠ΅Π»ΡΠ½ΠΎΡΡΡ ΡΠ°Π· Π΄Π΅ΡΠΈΠ±ΡΠΈΠ»Π»ΡΡΠΈΠΎΠ½Π½ΠΎΠ³ΠΎ ΠΈΠΌΠΏΡΠ»ΡΡΠ° ΡΠ»Π΅Π΄ΡΠ΅Ρ ΠΎΠ³ΡΠ°Π½ΠΈΡΠΈΠ²Π°ΡΡ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ΠΌ Π½Π΅ Π±ΠΎΠ»Π΅Π΅ 9 ΠΌΡ. ΠΡΠΈ ΡΡΠΎΠΌ Π½ΠΎΠΌΠΈΠ½Π°Π»ΡΠ½Π°Ρ Π²ΡΠ΄Π΅Π»Π΅Π½Π½Π°Ρ ΡΠ½Π΅ΡΠ³ΠΈΡ Π½Π° ΡΠΎΠΏΡΠΎΡΠΈΠ²Π»Π΅Π½ΠΈΠΈ Π½Π°Π³ΡΡΠ·ΠΊΠΈ 175 ΠΠΌ Π΄ΠΎΠ»ΠΆΠ½Π° ΡΠΎΡΡΠ°Π²Π»ΡΡΡ Π½Π΅ ΠΌΠ΅Π½Π΅Π΅ 140 ΠΠΆ. ΠΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎΡΡΡ ΡΠ²Π΅Π»ΠΈΡΠ΅Π½ΠΈΡ Π΄Π»ΠΈΡΠ΅Π»ΡΠ½ΠΎΡΡΠΈ ΠΈΠΌΠΏΡΠ»ΡΡΠ° Π±Π΅Π· Π·Π½Π°ΡΠΈΠΌΠΎΠ³ΠΎ ΠΏΠ°Π΄Π΅Π½ΠΈΡ Π΅Π³ΠΎ ΡΠ½Π΅ΡΠ³Π΅ΡΠΈΡΠ΅ΡΠΊΠΎΠΉ ΡΡΡΠ΅ΠΊΡΠΈΠ²Π½ΠΎΡΡΠΈ ΠΏΠΎΠ·Π²ΠΎΠ»ΠΈΡ ΠΎΠ±Π΅ΡΠΏΠ΅ΡΠΈΡΡ Π²ΡΠ΄Π΅Π»Π΅Π½ΠΈΠ΅ Π±ΠΎΠ»ΡΡΠ΅ΠΉ ΡΠ½Π΅ΡΠ³ΠΈΠΈ Ρ Π±ΠΎΠ»ΡΠ½ΡΡ
Ρ Π²ΡΡΠΎΠΊΠΈΠΌ ΡΠΎΠΏΡΠΎΡΠΈΠ²Π»Π΅Π½ΠΈΠ΅ΠΌ Π³ΡΡΠ΄Π½ΠΎΠΉ ΠΊΠ»Π΅ΡΠΊΠΈ ΠΈ, ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²Π΅Π½Π½ΠΎ, Π±ΠΎΠ»ΡΡΡΡ Π²Π΅ΡΠΎΡΡΠ½ΠΎΡΡΡ ΠΏΡΠΎΠ²Π΅Π΄Π΅Π½ΠΈΡ ΡΡΠΏΠ΅ΡΠ½ΠΎΠΉ Π΄Π΅ΡΠΈΠ±ΡΠΈΠ»Π»ΡΡΠΈΠΈ. Π£ΠΊΠ°Π·Π°Π½Π½ΠΎΠ΅ Π²ΡΡΠ΅ ΡΠ²Π΅Π»ΠΈΡΠΈΡ ΡΠ°ΠΊΠΆΠ΅ Π²Π΅ΡΠΎΡΡΠ½ΠΎΡΡΡ ΠΏΡΠΎΠ²Π΅Π΄Π΅Π½ΠΈΡ ΡΡΠΏΠ΅ΡΠ½ΠΎΠΉ Π΄Π΅ΡΠΈΠ±ΡΠΈΠ»Π»ΡΡΠΈΠΈ Ρ Π±ΠΎΠ»ΡΠ½ΡΡ
ΠΏΡΠΈ ΠΎΡΠΈΠ±ΠΊΠ°Ρ
Π½Π°Π»ΠΎΠΆΠ΅Π½ΠΈΡ Π΄Π΅ΡΠΈΠ±ΡΠΈΠ»Π»ΡΡΠΈΠΎΠ½Π½ΡΡ
ΡΠ»Π΅ΠΊΡΡΠΎΠ΄ΠΎΠ² ΠΈΠ»ΠΈ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½ΠΈΠΈ ΡΡΡ
ΠΈΡ
ΠΌΠ½ΠΎΠ³ΠΎΡΠ°Π·ΠΎΠ²ΡΡ
Π΄Π΅ΡΠΈΠ±ΡΠΈΠ»Π»ΡΡΠΈΠΎΠ½Π½ΡΡ
ΡΠ»Π΅ΠΊΡΡΠΎΠ΄ΠΎΠ².Β ΠΠΎΡΠ±ΡΠ½ΠΎΠ² Π.Π., ΠΠΎΡΡΡΠΈΠΊΠΎΠ² Π.Π., ΠΠ΅ΡΡΠ΅ΡΠ΅Π½ΠΊΠΎ Π.Π., Π’Π΅Π»ΡΡΠ΅Π² Π.Π. Π‘ΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ ΡΠ½Π΅ΡΠ³Π΅ΡΠΈΡΠ΅ΡΠΊΠΎΠΉ ΡΡΡΠ΅ΠΊΡΠΈΠ²Π½ΠΎΡΡΠΈ Π΄Π΅ΡΠΈΠ±ΡΠΈΠ»Π»ΡΡΠΈΠΎΠ½Π½ΡΡ
ΠΈΠΌΠΏΡΠ»ΡΡΠΎΠ² Π½Π° Π±Π°Π·Π΅ Π³ΠΈΠΏΠΎΡΠ΅Π·Ρ Π³Π°ΡΠ°Π½ΡΠΈΡΠΎΠ²Π°Π½Π½ΠΎΠΉ Π΄Π΅ΡΠΈΠ±ΡΠΈΠ»Π»ΡΡΠΈΠΈ. Ural Radio Engineering Journal. 2021;5(4):353β368. DOI: 10.15826/urej.2021.5.4.002.
Improvement of the organizational support of public water management in Ukraine at the national level
Π£ ΡΡΠ°ΡΡΡ Π²ΠΈΡΠ²Π»Π΅Π½ΠΎ ΡΠ΅ΠΎΡΠ΅ΡΠΈΠΊΠΎ-ΠΌΠ΅ΡΠΎΠ΄ΠΎΠ»ΠΎΠ³ΡΡΠ½Ρ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½Π½Ρ Π΄Π΅ΡΠΆΠ°Π²Π½ΠΎΠ³ΠΎ ΡΠΏΡΠ°Π²Π»ΡΠ½Π½Ρ Π²ΠΎΠ΄Π½ΠΈΠΌΠΈ ΡΠ΅ΡΡΡΡΠ°ΠΌΠΈ ΡΠ»ΡΡ
ΠΎΠΌ ΡΠΎΡΠΌΡΠ»ΡΠ²Π°Π½Π½Ρ ΡΠ·Π°Π³Π°Π»ΡΠ½Π΅Π½ΠΎΡ ΡΠΈΡΡΠ΅ΠΌΠΈ ΡΠ° ΡΠΈΡΡΠ΅ΠΌΠ½ΠΎΡ ΠΌΠΎΠ΄Π΅Π»Ρ ΠΌΠ΅Ρ
Π°Π½ΡΠ·ΠΌΡ Π΄Π΅ΡΠΆΠ°Π²Π½ΠΎΠ³ΠΎ ΡΠΏΡΠ°Π²Π»ΡΠ½Π½Ρ Π²ΠΎΠ΄Π½ΠΈΠΌΠΈ ΡΠ΅ΡΡΡΡΠ°ΠΌΠΈ. ΠΡΠ°Ρ
ΠΎΠ²ΡΡΡΠΈ ΠΊΠ»Π°ΡΠΈΡΠ½Ρ Π²ΠΈΠ·Π½Π°ΡΠ΅Π½Π½Ρ Π΄Π΅ΡΠΆΠ°Π²Π½ΠΎΠ³ΠΎ ΡΠΏΡΠ°Π²Π»ΡΠ½Π½Ρ ΡΠ° Π½Π°ΡΠ²Π½Ρ ΠΏΡΠ΄Ρ
ΠΎΠ΄ΠΈ Π΄ΠΎ ΡΠΏΡΠ°Π²Π»ΡΠ½Π½Ρ ΠΏΡΠΈΡΠΎΠ΄ΠΎΠΊΠΎΡΠΈΡΡΡΠ²Π°Π½Π½ΡΠΌ, Π·Π°ΠΏΡΠΎΠΏΠΎΠ½ΠΎΠ²Π°Π½ΠΎ ΡΡΠ°ΠΊΡΡΠ²Π°Π½Π½Ρ ΠΏΠΎΠ½ΡΡΡΡ Β«Π΄Π΅ΡΠΆΠ°Π²Π½ΠΎΠ³ΠΎ ΡΠΏΡΠ°Π²Π»ΡΠ½Π½Ρ Π²ΠΎΠ΄Π½ΠΈΠΌΠΈ ΡΠ΅ΡΡΡΡΠ°ΠΌΠΈΒ». ΠΠΈΠΊΠΎΡΠΈΡΡΠΎΠ²ΡΡΡΠΈ ΡΠΈΡΡΠ΅ΠΌΠ½ΠΈΠΉ ΠΏΡΠ΄Ρ
ΡΠ΄ Π½Π°Π²Π΅Π΄Π΅Π½ΠΎ ΡΠ·Π°Π³Π°Π»ΡΠ½Π΅Π½Ρ ΡΠΈΡΡΠ΅ΠΌΡ Π΄Π΅ΡΠΆΠ°Π²Π½ΠΎΠ³ΠΎ ΡΠΏΡΠ°Π²Π»ΡΠ½Π½Ρ Π²ΠΎΠ΄Π½ΠΈΠΌΠΈ ΡΠ΅ΡΡΡΡΠ°ΠΌΠΈ ΡΠ° ΡΠΎΠ·Π³Π»ΡΠ½ΡΡΠΎ ΡΡ ΠΎΡΠ½ΠΎΠ²Π½Ρ ΡΠΊΠ»Π°Π΄ΠΎΠ²Ρ: ΠΊΠ΅ΡΡΡΡΠ° ΠΏΡΠ΄ΡΠΈΡΡΠ΅ΠΌΠ°, ΠΊΠ΅ΡΠΎΠ²Π°Π½Π° ΠΏΡΠ΄ΡΠΈΡΡΠ΅ΠΌΠ°, Π·Π²ΠΎΡΠΎΡΠ½ΠΈΠΉ Π·Π²βΡΠ·ΠΎΠΊ, ΠΊΠ΅ΡΡΡΡΠΈΠΉ Π²ΠΏΠ»ΠΈΠ². ΠΡΠ°Ρ
ΠΎΠ²ΡΡΡΠΈ Π΄ΠΎΡΠ²ΡΠ΄ ΡΠ½ΠΎΠ·Π΅ΠΌΠ½ΠΈΡ
ΠΊΡΠ°ΡΠ½ ΡΠΎΠ·ΡΠΎΠ±Π»Π΅Π½ΠΎ ΡΡ
Π΅ΠΌΡ ΡΠ΅ΠΎΡΠ³Π°Π½ΡΠ·Π°ΡΡΡ ΡΠΏΡΠ°Π²Π»ΡΠ½Π½Ρ Π²ΠΎΠ΄Π½ΠΈΠΌΠΈ ΡΠ΅ΡΡΡΡΠ°ΠΌΠΈ Π² Π£ΠΊΡΠ°ΡΠ½Ρ Π½Π° Π½Π°ΡΡΠΎΠ½Π°Π»ΡΠ½ΠΎΠΌΡ ΡΡΠ²Π½Ρ ΡΠ° Π·Π°ΠΏΡΠΎΠΏΠΎΠ½ΠΎΠ²Π°Π½ΠΎ ΡΠΊΠ»Π°Π΄ ΠΠ°ΡΡΠΎΠ½Π°Π»ΡΠ½ΠΎΡ Π²ΠΎΠ΄Π½ΠΎΡ ΡΠ°Π΄ΠΈ. ΠΠ° ΠΎcΠ½ΠΎΠ²Ρ Β«Π²ΠΎΠ΄ΠΎΡΠ΅ΡΡΡΡΠ½ΠΎΠ³ΠΎΒ» ΠΏΡΠ΄Ρ
ΠΎΠ΄Ρ, ΠΊΠΎΠ»ΠΈ Π·ΠΌΡΡΡ Π·Π°Π²Π΄Π°Π½Ρ Π²ΠΈΠΏΠ»ΠΈΠ²Π°Ρ ΡΠ· ΠΏΠΎΠ²ΠΎΠ΄ΠΆΠ΅Π½Π½Ρ Π· Π²ΠΎΠ΄Π°ΠΌΠΈ ΡΠΊ Π· ΠΏΡΠΈΡΠΎΠ΄Π½ΠΈΠΌ ΡΠ΅ΡΡΡΡΠΎΠΌ, Π·Π°Π±Π΅Π·ΠΏΠ΅ΡΠ΅Π½Π½Ρ Π½ΠΈΠΌΠΈ Π² ΡΡΠ»ΠΎΠΌΡ Π³Π°Π»ΡΠ·Π΅ΠΉ Π΅ΠΊΠΎΠ½ΠΎΠΌΡΠΊΠΈ Ρ Π½Π°ΡΠ΅Π»Π΅Π½Π½Ρ, Π° Π½Π΅ Π· Π²ΠΎΠ΄ΠΎΡ ΡΠΊ ΡΠΎΠ²Π°ΡΠΎΠΌ ΠΏΡΠΈ Π±Π΅Π·ΠΏΠΎΡΠ΅ΡΠ΅Π΄Π½ΡΠΎΠΌΡ ΡΡ Π²ΠΈΠΊΠΎΡΠΈΡΡΠ°Π½Π½Ρ, ΡΠΎΠ·ΡΠΎΠ±Π»Π΅Π½ΠΎ ΡΡ
Π΅ΠΌΡ ΠΏΠ΅ΡΠ΅Π΄Π°ΡΡ ΠΏΠΎΠ²Π½ΠΎΠ²Π°ΠΆΠ΅Π½Ρ ΡΠ° Π²Π΄ΠΎΡΠΊΠΎΠ½Π°Π»Π΅Π½Π½Ρ ΠΎΡΠ³Π°Π½ΡΠ·Π°ΡΡΠΉΠ½ΠΎΡ ΡΡΡΡΠΊΡΡΡΠΈ Π΄Π΅ΡΠΆΠ°Π²Π½ΠΎΠ³ΠΎ ΡΠΏΡΠ°Π²Π»ΡΠ½Π½Ρ Π² Π²ΠΎΠ΄Π½ΡΠΉ ΡΡΠ΅ΡΡ.The article revealed the theoretical and methodological provision of public water management system by formulating the generalized system model and mechanism of state water management. Due to the classical definition of governance and existing approaches to environmental management the interpretation of the term Β«public water managementΒ» is proposed. Using a systematic approach summarizes the system of public water management and considered its main components: control subsystem, controlled subsystem, feedback, control action. Based on the experience of foreign countries the scheme of reorganization of water management in Ukraine at the national level and composition of the National Water Council are proposed. Based on Β«water resourcesΒ» approach, when the content of tasks resulting from the treatment of water as a natural resource, ensuring them a whole sectors of the economy and the population, not with water as a commodity with direct its use scheme of devolution and improve the organizational structure of public administration in the water sector.Β The effectiveness of the functioning of the public administration mechanism by any social and production processes depends to a large extent on its organizational support. Public administration of water resources in Ukraine in the Soviet era was built on the principles of authoritarian and command management with the adoption and implementation of decisions under the rigid "top-down" scheme and the construction of appropriate organizational management schemes within the administrative division of the country's territory in the regions and districts. The domestic system of state management of water resources still has the remnants of the administrative-command control system, organizational incompleteness, inter-sectoral orientation, and the dispersion of functions among many state authorities.With the introduction in Ukraine of the principles of integrated management and management of river basins, which are the main ones in the EU Water Framework Directive and which are based on the laws and regulations of Ukraine on water development, in particular the Water Code of Ukraine, laws and government resolutions, the search for ways to improve the organizational mechanisms of state water resources management according to European requirements is becoming relevant
ΠΡΡΠ΅ΠΊΡΠΈΠ²Π½ΠΎΡΡΡ ΠΈ Π±Π΅Π·ΠΎΠΏΠ°ΡΠ½ΠΎΡΡΡ ΡΠ»Π΅ΠΊΡΡΠΈΡΠ΅ΡΠΊΠΎΠΉ Π΄Π΅ΡΠΈΠ±ΡΠΈΠ»Π»ΡΡΠΈΠΈ ΠΆΠ΅Π»ΡΠ΄ΠΎΡΠΊΠΎΠ² ΡΠ΅ΡΠ΄ΡΠ°: ΡΠΊΡΠΏΠ΅ΡΠΈΠΌΠ΅Π½Ρ ΠΈ ΠΊΠ»ΠΈΠ½ΠΈΠΊΠ°
The paper provides the results of the 1990β2010 experimental and clinical studies on the optimization of the efficiency of electrical ventricular defibrillation using the Russian bipolar quasi-sinusoidal impulse. The comprehensive study of the influence of major cardiac and extracardiac factors, such as heart failure, the type and duration of fibrillation, its amplitude and frequency characteristics, chest resistance, electrode sizes, administration of antiarrhythmic drugs, and phase 2 impulse amplitude on the efficiency and safety of defibrillation, could formulate a number of new propositions and solve some methodological and methodic issues. The dose-dependent effectiveness of the quasi-sinusoidal impulse has been first investigated in patients with induced, spontaneous primary and secondary fibrillation and ventricular tachycardia. Low-energy (Key words: defibrillation, bipolar quasi-sinusoidal impulse.ΠΡΠ΅Π΄ΡΡΠ°Π²Π»Π΅Π½Ρ ΡΠ΅Π·ΡΠ»ΡΡΠ°ΡΡ ΡΠΊΡΠΏΠ΅ΡΠΈΠΌΠ΅Π½ΡΠ°Π»ΡΠ½ΡΡ
ΠΈ ΠΊΠ»ΠΈΠ½ΠΈΡΠ΅ΡΠΊΠΈΡ
ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΠΉ (1990β2010 Π³.), ΠΏΠΎΡΠ²ΡΡΠ΅Π½Π½ΡΡ
ΠΎΠΏΡΠΈΠΌΠΈΠ·Π°ΡΠΈΠΈ ΡΡΡΠ΅ΠΊΡΠΈΠ²Π½ΠΎΡΡΠΈ ΡΠ»Π΅ΠΊΡΡΠΈΡΠ΅ΡΠΊΠΎΠΉ Π΄Π΅ΡΠΈΠ±ΡΠΈΠ»Π»ΡΡΠΈΠΈ ΠΆΠ΅Π»ΡΠ΄ΠΎΡΠΊΠΎΠ² ΡΠ΅ΡΠ΄ΡΠ° ΠΎΡΠ΅ΡΠ΅ΡΡΠ²Π΅Π½Π½ΡΠΌ ΠΈΠΌΠΏΡΠ»ΡΡΠΎΠΌ Π±ΠΈΠΏΠΎΠ»ΡΡΠ½ΠΎΠΉ ΠΊΠ²Π°Π·ΠΈΡΠΈΠ½ΡΡΠΎΠΈΠ΄Π°Π»ΡΠ½ΠΎΠΉ ΡΠΎΡΠΌΡ. ΠΠΎΠΌΠΏΠ»Π΅ΠΊΡΠ½ΠΎΠ΅ ΠΈΠ·ΡΡΠ΅Π½ΠΈΠ΅ Π²Π»ΠΈΡΠ½ΠΈΡ ΠΎΡΠ½ΠΎΠ²Π½ΡΡ
ΠΊΠ°ΡΠ΄ΠΈΠ°Π»ΡΠ½ΡΡ
ΠΈ ΡΠΊΡΡΡΠ°ΠΊΠ°ΡΠ΄ΠΈΠ°Π»ΡΠ½ΡΡ
ΡΠ°ΠΊΡΠΎΡΠΎΠ² (ΡΠ°ΠΊΠΈΡ
ΠΊΠ°ΠΊ: ΡΠ΅ΡΠ΄Π΅ΡΠ½Π°Ρ Π½Π΅Π΄ΠΎΡΡΠ°ΡΠΎΡΠ½ΠΎΡΡΡ, Π²ΠΈΠ΄ ΠΈ ΠΏΡΠΎΠ΄ΠΎΠ»ΠΆΠΈΡΠ΅Π»ΡΠ½ΠΎΡΡΡ ΡΠΈΠ±ΡΠΈΠ»Π»ΡΡΠΈΠΈ, Π΅Π΅ Π°ΠΌΠΏΠ»ΠΈΡΡΠ΄Π½ΠΎ-ΡΠ°ΡΡΠΎΡΠ½ΡΠ΅ Ρ
Π°ΡΠ°ΠΊΡΠ΅ΡΠΈΡΡΠΈΠΊΠΈ, ΡΠΎΠΏΡΠΎΡΠΈΠ²Π»Π΅Π½ΠΈΠ΅ Π³ΡΡΠ΄Π½ΠΎΠΉ ΠΊΠ»Π΅ΡΠΊΠΈ, ΡΠ°Π·ΠΌΠ΅Ρ ΡΠ»Π΅ΠΊΡΡΠΎΠ΄ΠΎΠ², Π²Π²Π΅Π΄Π΅Π½ΠΈΠ΅ Π°Π½ΡΠΈΠ°ΡΠΈΡΠΌΠΈΡΠ΅ΡΠΊΠΈΡ
ΠΏΡΠ΅ΠΏΠ°ΡΠ°ΡΠΎΠ², Π°ΠΌΠΏΠ»ΠΈΡΡΠ΄Π° 2-ΠΉ ΡΠ°Π·Ρ ΠΈΠΌΠΏΡΠ»ΡΡΠ°) Π½Π° ΡΡΡΠ΅ΠΊΡΠΈΠ²Π½ΠΎΡΡΡ ΠΈ Π±Π΅Π·ΠΎΠΏΠ°ΡΠ½ΠΎΡΡΡ Π΄Π΅ΡΠΈΠ±ΡΠΈΠ»Π»ΡΡΠΈΠΈ ΠΏΠΎΠ·Π²ΠΎΠ»ΠΈΠ»ΠΎ ΡΡΠΎΡΠΌΡΠ»ΠΈΡΠΎΠ²Π°ΡΡ ΡΡΠ΄ Π½ΠΎΠ²ΡΡ
ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠΉ ΠΈ ΡΠ΅ΡΠΈΡΡ Π½Π΅ΠΊΠΎΡΠΎΡΡΠ΅ ΠΌΠ΅ΡΠΎΠ΄ΠΎΠ»ΠΎΠ³ΠΈΡΠ΅ΡΠΊΠΈΠ΅ ΠΈ ΠΌΠ΅ΡΠΎΠ΄ΠΈΡΠ΅ΡΠΊΠΈΠ΅ Π²ΠΎΠΏΡΠΎΡΡ. ΠΠΏΠ΅ΡΠ²ΡΠ΅ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½Π° Π΄ΠΎΠ·ΠΎΠ·Π°Π²ΠΈΡΠΈΠΌΠ°Ρ ΡΡΡΠ΅ΠΊΡΠΈΠ²Π½ΠΎΡΡΡ ΠΊΠ²Π°Π·ΠΈΡΠΈΠ½ΡΡΠΎΠΈΠ΄Π°Π»ΡΠ½ΠΎΠ³ΠΎ ΠΈΠΌΠΏΡΠ»ΡΡΠ° Ρ Π±ΠΎΠ»ΡΠ½ΡΡ
Ρ Π²ΡΠ·Π²Π°Π½Π½ΠΎΠΉ, ΡΠΏΠΎΠ½ΡΠ°Π½Π½ΠΎΠΉ ΠΏΠ΅ΡΠ²ΠΈΡΠ½ΠΎΠΉ ΠΈ Π²ΡΠΎΡΠΈΡΠ½ΠΎΠΉ ΡΠΈΠ±ΡΠΈΠ»Π»ΡΡΠΈΠ΅ΠΉ, ΠΈ ΠΆΠ΅Π»ΡΠ΄ΠΎΡΠΊΠΎΠ²ΠΎΠΉ ΡΠ°Ρ
ΠΈΠΊΠ°ΡΠ΄ΠΈΠ΅ΠΉ. Π£ΡΡΠ°Π½ΠΎΠ²Π»Π΅Π½Π° Π²ΡΡΠΎΠΊΠ°Ρ ΡΡΡΠ΅ΠΊΡΠΈΠ²Π½ΠΎΡΡΡ ΡΠ°Π·ΡΡΠ΄ΠΎΠ² Π½Π΅Π±ΠΎΠ»ΡΡΠΎΠΉ ΡΠ½Π΅ΡΠ³ΠΈ
ΠΠ»Π΅ΠΊΡΡΠΈΡΠ΅ΡΠΊΠ°Ρ Π΄Π΅ΡΠΈΠ±ΡΠΈΠ»Π»ΡΡΠΈΡ ΠΏΡΠΈ Π²Π½Π΅Π·Π°ΠΏΠ½ΠΎΠΉ ΠΎΡΡΠ°Π½ΠΎΠ²ΠΊΠ΅ ΡΠ΅ΡΠ΄ΡΠ° Π½Π° Π΄ΠΎΠ³ΠΎΡΠΏΠΈΡΠ°Π»ΡΠ½ΠΎΠΌ ΡΡΠ°ΠΏΠ΅
The past decade is marked by very high cardiovascular mortality rates in Russia. Sudden death caused by ventricular fibrillation and asystole is one of the leading reasons for the high mortality. Sudden out-of-hospital cardiac arrest occurs in as high as 70β80% of the cases. The key factor that determines the success of resuscitation and survival in patients with cardiac arrest due to fibrillation is early defibrillation (within the first 5 minutes). Small-sized automated external defibrilla-tors that can be used not only by medical workers, but also paramedics and educated population should be introduced into prehospital resuscitative care to solve this problem in this country.ΠΠΎΡΠ»Π΅Π΄Π½Π΅Π΅ Π΄Π΅ΡΡΡΠΈΠ»Π΅ΡΠΈΠ΅ Π² Π ΠΎΡΡΠΈΠΈ ΠΎΡΠΌΠ΅ΡΠ°Π΅ΡΡΡ ΠΎΡΠ΅Π½Ρ Π²ΡΡΠΎΠΊΠ°Ρ Π»Π΅ΡΠ°Π»ΡΠ½ΠΎΡΡΡ ΠΎΡ ΡΠ΅ΡΠ΄Π΅ΡΠ½ΠΎ-ΡΠΎΡΡΠ΄ΠΈΡΡΡΡ
Π·Π°Π±ΠΎΠ»Π΅Π²Π°Π½ΠΈΠΉ. ΠΠ΄Π½ΠΎΠΉ ΠΈΠ· Π²Π΅Π΄ΡΡΠΈΡ
ΠΏΡΠΈΡΠΈΠ½ Π²ΡΡΠΎΠΊΠΎΠΉ Π»Π΅ΡΠ°Π»ΡΠ½ΠΎΡΡΠΈ ΡΠ²Π»ΡΠ΅ΡΡΡ Π²Π½Π΅Π·Π°ΠΏΠ½Π°Ρ ΡΠ΅ΡΠ΄Π΅ΡΠ½Π°Ρ ΡΠΌΠ΅ΡΡΡ Π²ΡΠ»Π΅Π΄ΡΡΠ²ΠΈΠ΅ ΡΠ°Π·Π²ΠΈΡΠΈΡ ΡΠΈΠ±ΡΠΈΠ»Π»ΡΡΠΈΠΈ ΠΆΠ΅Π»ΡΠ΄ΠΎΡΠΊΠΎΠ² ΠΈ Π°ΡΠΈΡΡΠΎΠ»ΠΈΠΈ. ΠΡΠΈ ΡΡΠΎΠΌ Π΄ΠΎ 70β80% ΡΠ»ΡΡΠ°Π΅Π² Π²Π½Π΅Π·Π°ΠΏΠ½ΠΎΠΉ ΠΎΡΡΠ°Π½ΠΎΠ²ΠΊΠΈ ΡΠ΅ΡΠ΄ΡΠ° ΠΏΡΠΎΠΈΡΡ
ΠΎΠ΄ΠΈΡ Π²Π½Π΅ Π±ΠΎΠ»ΡΠ½ΠΈΡΡ. ΠΠ»ΡΡΠ΅Π²ΡΠΌ ΡΠ°ΠΊΡΠΎΡΠΎΠΌ, ΠΎΠΏΡΠ΅Π΄Π΅Π»ΡΡΡΠΈΠΌ ΡΡΠΏΠ΅Ρ
ΡΠ΅Π°Π½ΠΈΠΌΠ°ΡΠΈΠΈ ΠΈ Π²ΡΠΆΠΈΠ²Π°Π΅ΠΌΠΎΡΡΠΈ Π±ΠΎΠ»ΡΠ½ΡΡ
Ρ ΠΎΡΡΠ°Π½ΠΎΠ²ΠΊΠΎΠΉ ΡΠ΅ΡΠ΄ΡΠ° Π²ΡΠ»Π΅Π΄ΡΡΠ²ΠΈΠ΅ ΡΠΈΠ±ΡΠΈΠ»Π»ΡΡΠΈΠΈ, ΡΠ²Π»ΡΠ΅ΡΡΡ ΠΏΡΠΎΠ²Π΅Π΄Π΅Π½ΠΈΠ΅ ΡΠ°Π½Π½Π΅ΠΉ (Π² ΡΠ΅ΡΠ΅Π½ΠΈΠ΅ ΠΏΠ΅ΡΠ²ΡΡ
5 ΠΌΠΈΠ½ΡΡ) Π΄Π΅ΡΠΈΠ±ΡΠΈΠ»Π»ΡΡΠΈΠΈ. ΠΠ»Ρ ΠΏΠΎΠ·ΠΈΡΠΈΠ²Π½ΠΎΠ³ΠΎ ΡΠ΅ΡΠ΅Π½ΠΈΡ Π΄Π°Π½Π½ΠΎΠΉ ΠΏΡΠΎΠ±Π»Π΅ΠΌΡ Π² Π½Π°ΡΠ΅ΠΉ ΡΡΡΠ°Π½Π΅ Π½Π΅ΠΎΠ±Ρ
ΠΎΠ΄ΠΈΠΌΠΎ Π²Π½Π΅Π΄ΡΡΡΡ Π² ΠΏΡΠ°ΠΊΡΠΈΠΊΡ Π΄ΠΎΠ³ΠΎΡΠΏΠΈΡΠ°Π»ΡΠ½ΠΎΠΉ ΡΠ΅Π°Π½ΠΈΠΌΠ°ΡΠΈΠΈ ΠΌΠ°Π»ΠΎΠ³Π°Π±Π°ΡΠΈΡΠ½ΡΠ΅ Π°Π²ΡΠΎΠΌΠ°ΡΠΈΡΠ΅ΡΠΊΠΈΠ΅ Π½Π°ΡΡΠΆΠ½ΡΠ΅ Π΄Π΅ΡΠΈΠ±ΡΠΈΠ»Π»ΡΡΠΎΡΡ, ΠΊΠΎΡΠΎΡΡΠ΅ ΠΌΠΎΠ³ΡΡ ΠΏΡΠΈΠΌΠ΅Π½ΡΡΡ Π½Π΅ ΡΠΎΠ»ΡΠΊΠΎ ΠΌΠ΅Π΄ΠΈΡΠΈΠ½ΡΠΊΠΈΠ΅ ΡΠ°Π±ΠΎΡΠ½ΠΈΠΊΠΈ, Π½ΠΎ ΡΠ°ΠΊΠΆΠ΅ ΠΏΠ°ΡΠ°ΠΌΠ΅Π΄ΠΈΠΊΠΈ ΠΈ ΠΎΠ±ΡΡΠ΅Π½Π½ΠΎΠ΅ Π½Π°ΡΠ΅Π»Π΅Π½ΠΈΠ΅
ΠΠ΅ΠΎΠ·Π°Π³Π»Π°Π²Π»Π΅Π½
The prevalence of obesity and overweight is one of the most pressing problems nowadays. Obesity as a comorbid condition affects all body systems. Obesity has been reported to be a risk factor not only for cardiovascular diseases and oncopathology, but also for fertility problems, many obstetric and perinatal complications worsening the maternal and infant health. The balance between the oxidative and antioxidant system is one of the indicators of the state of human homeostasis. Today it is proved that obesity is associated with an increase in oxidative stress and a decrease in antioxidant protection. This review reveals a close relationship between obesity, oxidative stress and reproductive problems
Explosions of water clusters in intense laser fields
Energetic, highly-charged oxygen ions, (), are copiously
produced upon laser field-induced disassembly of highly-charged water clusters,
and , 60, that are formed by seeding high-pressure
helium or argon with water vapor. clusters (n40000) formed under
similar experimental conditions are found undergo disassembly in the Coulomb
explosion regime, with the energies of ions showing a
dependence. Water clusters, which are argued to be considerably smaller in
size, should also disassemble in the same regime, but the energies of fragment
O ions are found to depend linearly on which, according to
prevailing wisdom, ought to be a signature of hydrodynamic expansion that is
expected of much larger clusters. The implication of these observations on our
understanding of the two cluster explosion regimes, Coulomb explosion and
hydrodynamic expansion, is discussed. Our results indicate that charge state
dependences of ion energy do not constitute an unambiguous experimental
signature of cluster explosion regime.Comment: Submitted to Phys. Rev.
ΠΡΠ΅ΡΠ΅ΡΡΠ²Π΅Π½Π½Π°Ρ ΠΈΡΡΠΎΡΠΈΡ Π΄Π΅ΡΠΈΠ±ΡΠΈΠ»Π»ΡΡΠΈΠΈ ΡΠ΅ΡΠ΄ΡΠ°
The year 2012 is the anniversary year of the Russian history of cardiac defibrillation. Two anniversaries associated with the name of N. L. Gurvich, the founder of impulse defibrillation by high-voltage capacitor discharge, are being celebrated this year.2012 Π³ΠΎΠ΄ β ΡΠ±ΠΈΠ»Π΅ΠΉΠ½ΡΠΉ Π΄Π»Ρ ΠΎΡΠ΅ΡΠ΅ΡΡΠ²Π΅Π½Π½ΠΎΠΉ ΠΈΡΡΠΎΡΠΈΠΈ ΡΠ°Π·Π²ΠΈΡΠΈΡ Π΄Π΅ΡΠΈΠ±ΡΠΈΠ»Π»ΡΡΠΈΠΈ ΡΠ΅ΡΠ΄ΡΠ°. Π ΡΡΠΎΠΌ Π³ΠΎΠ΄Ρ ΠΎΡΠΌΠ΅ΡΠ°ΡΡΡΡ Π΄Π²Π° ΡΠ±ΠΈΠ»Π΅Ρ, ΡΠ²ΡΠ·Π°Π½Π½ΡΠ΅ Ρ ΠΈΠΌΠ΅Π½Π΅ΠΌ Π. Π. ΠΡΡΠ²ΠΈΡΠ° β ΠΎΡΠ½ΠΎΠ²ΠΎΠΏΠΎΠ»ΠΎΠΆΠ½ΠΈΠΊΠ° ΠΈΠΌΠΏΡΠ»ΡΡΠ½ΠΎΠΉ Π΄Π΅ΡΠΈΠ±ΡΠΈΠ»Π»ΡΡΠΈΠΈ Π²ΡΡΠΎΠΊΠΎΠ²ΠΎΠ»ΡΡΠ½ΡΠΌ ΡΠ°Π·ΡΡΠ΄ΠΎΠΌ ΠΊΠΎΠ½Π΄Π΅Π½ΡΠ°ΡΠΎΡΠ°
- β¦