9,097 research outputs found

    Incremental and Transitive Discrete Rotations

    Get PDF
    A discrete rotation algorithm can be apprehended as a parametric application f_αf\_\alpha from \ZZ[i] to \ZZ[i], whose resulting permutation ``looks like'' the map induced by an Euclidean rotation. For this kind of algorithm, to be incremental means to compute successively all the intermediate rotate d copies of an image for angles in-between 0 and a destination angle. The di scretized rotation consists in the composition of an Euclidean rotation with a discretization; the aim of this article is to describe an algorithm whic h computes incrementally a discretized rotation. The suggested method uses o nly integer arithmetic and does not compute any sine nor any cosine. More pr ecisely, its design relies on the analysis of the discretized rotation as a step function: the precise description of the discontinuities turns to be th e key ingredient that will make the resulting procedure optimally fast and e xact. A complete description of the incremental rotation process is provided, also this result may be useful in the specification of a consistent set of defin itions for discrete geometry

    Stability of Coalescence Hidden variable Fractal Interpolation Surfaces

    Full text link
    In the present paper, the stability of Coalescence Hidden variable Fractal Interpolation Surfaces(CHFIS) is established. The estimates on error in approximation of the data generating function by CHFIS are found when there is a perturbation in independent, dependent and hidden variables. It is proved that any small perturbation in any of the variables of generalized interpolation data results in only small perturbation of CHFIS. Our results are likely to be useful in investigations of texture of surfaces arising from the simulation of surfaces of rocks, sea surfaces, clouds and similar natural objects wherein the generating function depends on more than one variable

    Discontinuities in self-affine functions lead to multiaffinity

    Full text link

    Inverse Anticipating Synchronization

    Full text link
    We report a new type of chaos synchronization:inverse anticipating synchronization, where a time delay chaotic system can drive another system in such a way that the driven system anticipates the driver by synchronizing with its inverse future state. We extend the concept of inverse anticipating chaos synchronization to cascaded systems. We propose means for the experimental observation of inverse anticipating chaos synchronization in external cavity lasers.Comment: LaTex 6 pages, resubmitted to PR

    128Xe and 130Xe: Testing He-shell burning in AGB stars

    Full text link
    The s-process branching at 128I has been investigated on the basis of new, precise experimental (n,g) cross sections for the s-only isotopes 128Xe and 130Xe. This branching is unique, since it is essentially determined by the temperature- and density-sensitive stellar decay rates of 128I and only marginally affected by the specific stellar neutron flux. For this reason it represents an important test for He-shell burning in AGB stars. The description of the branching by means of the complex stellar scenario reveals a significant sensitivity to the time scales for convection during He shell flashes, thus providing constraints for this phenomenon. The s-process ratio 128Xe/130Xe deduced from stellar models allows for a (9+-3)% p-process contribution to solar 128Xe, in agreement with the Xe-S component found in meteoritic presolar SiC grains.Comment: 24 pages, 9 figures, accepted for publication in Astophysical Journa

    Revisiting Digital Straight Segment Recognition

    Full text link
    This paper presents new results about digital straight segments, their recognition and related properties. They come from the study of the arithmetically based recognition algorithm proposed by I. Debled-Rennesson and J.-P. Reveill\`es in 1995 [Debled95]. We indeed exhibit the relations describing the possible changes in the parameters of the digital straight segment under investigation. This description is achieved by considering new parameters on digital segments: instead of their arithmetic description, we examine the parameters related to their combinatoric description. As a result we have a better understanding of their evolution during recognition and analytical formulas to compute them. We also show how this evolution can be projected onto the Stern-Brocot tree. These new relations have interesting consequences on the geometry of digital curves. We show how they can for instance be used to bound the slope difference between consecutive maximal segments

    The First Year IceCube-DeepCore Results

    Full text link
    The IceCube Neutrino Observatory includes a tightly spaced inner array in the deepest ice, called DeepCore, which gives access to low-energy neutrinos with a sizable surrounding cosmic ray muon veto. Designed to be sensitive to neutrinos at energies as low as 10 GeV, DeepCore will be used to study diverse physics topics with neutrino signatures, such as dark matter annihilations and atmospheric neutrino oscillations. The first year of DeepCore physics data-taking has been completed, and the first observation of atmospheric neutrino-induced cascades with IceCube and DeepCore are presented.Comment: 4 pages, 3 figures, TAUP 2011 (Journal of Physics: Conference Series (JCPS)

    Decomposing Service Definition in Predicate/Transition-Nets for Designing Distributed Systems

    Full text link
    In this paper, we propose a new algorithm for the derivation of a protocol specification in Pr/T-nets, which is the specification of communicating N entities (N can be given), from a given service specification in Pr/T-nets and an allocation of the places of the service specification to the N entities. Our algorithm decomposes each transition of the service specification into a set of communicating Pr/T-subnets running on the N entities. Moreover, for the efficient control of conflict of shared resources, we present a timestamp-based mutual exclusion algorithm and incorporate it into the derivation algorithm
    • …
    corecore