3,366 research outputs found

    Proposed Objective Odor Control Test Methodology for Waste Containment

    Get PDF
    The Orion Cockpit Working Group has requested that an odor control testing methodology be proposed to evaluate the odor containment effectiveness of waste disposal bags to be flown on the Orion Crew Exploration Vehicle. As a standardized "odor containment" test does not appear to be a matter of record for the project, a new test method is being proposed. This method is based on existing test methods used in industrial hygiene for the evaluation of respirator fit in occupational settings, and takes into consideration peer reviewed documentation of human odor thresholds for standardized contaminates, industry stardnard atmostpheric testing methodologies, and established criteria for laboratory analysis. The proposed methodology is quantitative, though it can readily be complimented with a qualitative subjective assessment. Isoamyl acetate (IAA - also known at isopentyl acetate) is commonly used in respirator fit testing, and there are documented methodologies for both measuring its quantitative airborne concentrations. IAA is a clear, colorless liquid with a banana-like odor, documented detectable smell threshold for humans of 0.025 PPM, and a 15 PPB level of quantation limit

    Evidence Report: Risk of Inadequate Human-Computer Interaction

    Get PDF
    Human-computer interaction (HCI) encompasses all the methods by which humans and computer-based systems communicate, share information, and accomplish tasks. When HCI is poorly designed, crews have difficulty entering, navigating, accessing, and understanding information. HCI has rarely been studied in an operational spaceflight context, and detailed performance data that would support evaluation of HCI have not been collected; thus, we draw much of our evidence from post-spaceflight crew comments, and from other safety-critical domains like ground-based power plants, and aviation. Additionally, there is a concern that any potential or real issues to date may have been masked by the fact that crews have near constant access to ground controllers, who monitor for errors, correct mistakes, and provide additional information needed to complete tasks. We do not know what types of HCI issues might arise without this "safety net". Exploration missions will test this concern, as crews may be operating autonomously due to communication delays and blackouts. Crew survival will be heavily dependent on available electronic information for just-in-time training, procedure execution, and vehicle or system maintenance; hence, the criticality of the Risk of Inadequate HCI. Future work must focus on identifying the most important contributing risk factors, evaluating their contribution to the overall risk, and developing appropriate mitigations. The Risk of Inadequate HCI includes eight core contributing factors based on the Human Factors Analysis and Classification System (HFACS): (1) Requirements, policies, and design processes, (2) Information resources and support, (3) Allocation of attention, (4) Cognitive overload, (5) Environmentally induced perceptual changes, (6) Misperception and misinterpretation of displayed information, (7) Spatial disorientation, and (8) Displays and controls

    Development of Human System Integration at NASA

    Get PDF
    Human Systems Integration seeks to design systems around the capabilities and limitations of the humans which use and interact with the system, ensuring greater efficiency of use, reduced error rates, and less rework in the design, manufacturing and operational deployment of hardware and software. One of the primary goals of HSI is to get the human factors practitioner involved early in the design process. In doing so, the aim is to reduce future budget costs and resources in redesign and training. By the preliminary design phase of a project nearly 80% of the total cost of the project is locked in. Potential design changes recommended by evaluations past this point will have little effect due to lack of funding or a huge cost in terms of resources to make changes. Three key concepts define an effective HSI program. First, systems are comprised of hardware, software, and the human, all of which operate within an environment. Too often, engineers and developers fail to consider the human capacity or requirements as part of the system. This leads to poor task allocation within the system. To promote ideal task allocation, it is critical that the human element be considered early in system development. Poor design, or designs that do not adequately consider the human component, could negatively affect physical or mental performance, as well as, social behavior. Second, successful HSI depends upon integration and collaboration of all the domains that represent acquisition efforts. Too often, these domains exist as independent disciplines due to the location of expertise within the service structure. Proper implementation of HSI through participation would help to integrate these domains and disciplines to leverage and apply their interdependencies to attain an optimal design. Via this process domain interests can be integrated to perform effective HSI through trade-offs and collaboration. This provides a common basis upon which to make knowledgeable decisions. Finally, HSI must be considered early in the requirements development phase of system design and acquisition. This will provide the best opportunity to maximize return on investment (ROI) and system performance. HSI requirements must be developed in conjunction with capability ]based requirements generation through functional. HSI requirements will drive HSI metrics and embed HSI issues within the system design. After a system is designed, implementation of HSI oversights can be very expensive. An HSI program should be included as an integral part of a total system approach to vehicle and habitat development. This would include, but not limited to, workstation design, D&C development, volumetric analysis, training, operations, and human -robotic interaction. HSI is a necessary process for Human Space Flight programs to meet the Agency Human ]System standards and thus mitigate human risks to acceptable levels. NASA has been involved in HSI planning, procedures development, process, and implementation for many years, and has been building several internal and publicly accessible products to facilitate HSI fs inclusion in the NASA Systems Engineering Lifecycle. Some of these products include: NASA STD 3001 Volumes 1 and 2, Human Integration Design Handbook, NASA HSI Implementation Plan, NASA HSI Implementation Plan Templates, NASA HSI Implementation Handbook, and a 2 ]hour short course on HSI delivered as part of the NASA Space and Life Sciences Directorate Academy. These products have been created leveraging industry best practices and lessons learned from other Federal Government agencies

    Cooper-Harper (CH) and NASA Task Load Index Overview

    Get PDF
    No abstract availabl

    Stable hZW10 kinetochore residency, mediated by hZwint-1 interaction, is essential for the mitotic checkpoint

    Get PDF
    The mitotic checkpoint is an essential surveillance mechanism that ensures high fidelity chromosome segregation during mitosis. Mitotic checkpoint function depends on numerous kinetochore proteins, including ZW10, ROD, and Zwilch (the ROD–ZW10–Zwilch complex). Through an extensive mutagenesis screen of hZW10, we have mapped the kinetochore localization domain of hZW10 as well as the hZwint-1 interaction domain. We find that hZwint-1–noninteracting mutants still localize to kinetochores. In addition, using fluorescence recovery after photobleaching, we have found that hZW10 residency at metaphase kinetochores is brief (half-time of 13 s). However, during prometaphase or at unattached kinetochores, enhanced green fluorescent protein–hZW10 becomes a stable component of the kinetochore. Moreover, we find that stable hZW10 kinetochore residency at prometaphase kinetochores is dependent on its interaction with hZwint-1, and is essential for mitotic checkpoint arrest

    Early Impacts of a Human-in-the-Loop Evaluation in a Space Vehicle Mock-up Facility

    Get PDF
    The development of a new space vehicle, the Orion Crew Exploration Vehicle (CEV), provides Human Factors engineers an excellent opportunity to have an impact early in the design process. This case study highlights a Human-in-the-Loop (HITL) evaluation conducted in a Space Vehicle Mock-Up Facility and will describe the human-centered approach and how the findings are impacting design and operational concepts early in space vehicle design. The focus of this HITL evaluation centered on the activities that astronaut crewmembers would be expected to perform within the functional internal volume of the Crew Module (CM) of the space vehicle. The primary objective was to determine if there are aspects of a baseline vehicle configuration that would limit or prevent the performance of dynamically volume-driving activities (e.g. six crewmembers donning their suits in an evacuation scenario). A second objective was to step through concepts of operations for known systems and evaluate them in integrated scenarios. The functional volume for crewmember activities is closely tied to every aspect of system design (e.g. avionics, safety, stowage, seats, suits, and structural support placement). As this evaluation took place before the Preliminary Design Review of the space vehicle with some designs very early in the development, it was not meant to determine definitely that the crewmembers could complete every activity, but rather to provide inputs that could improve developing designs and concepts of operations definition refinement

    Orion Handling Qualities During ISS Proximity Operations and Docking

    Get PDF
    NASA's Orion spacecraft is designed to autonomously rendezvous and dock with many vehicles including the International Space Station. However, the crew is able to assume manual control of the vehicle s attitude and flight path. In these instances, Orion must meet handling qualities requirements established by NASA. Two handling qualities assessments were conducted at the Johnson Space Center to evaluate preliminary designs of the vehicle using a six degree of freedom, high-fidelity guidance, navigation, and control simulation. The first assessed Orion s handling qualities during the last 20 ft before docking, and included both steady and oscillatory motions of the docking target. The second focused on manual acquisition of the docking axis during the proximity operations phase and subsequent station-keeping. Cooper-Harper handling qualities ratings, workload ratings and comments were provided by 10 evaluation pilots for the docking study and 5 evaluation pilots for the proximity operations study. For the docking task, both cases received 90% Level 1 (satisfactory) handling qualities ratings, exceeding NASA s requirement. All ratings for the ProxOps task were Level 1. These evaluations indicate that Orion is on course to meet NASA's handling quality requirements for ProxOps and docking

    A Tool for the Automated Collection of Space Utilization Data: Three Dimensional Space Utilization Monitor

    Get PDF
    Space Human Factors and Habitability (SHFH) Element within the Human Research Program (HRP), in collaboration with the Behavioral Health and Performance (BHP) Element, is conducting research regarding Net Habitable Volume (NHV), the internal volume within a spacecraft or habitat that is available to crew for required activities, as well as layout and accommodations within that volume. NASA is looking for innovative methods to unobtrusively collect NHV data without impacting crew time. Data required includes metrics such as location and orientation of crew, volume used to complete tasks, internal translation paths, flow of work, and task completion times. In less constrained environments methods for collecting such data exist yet many are obtrusive and require significant postprocessing. Example technologies used in terrestrial settings include infrared (IR) retroreflective marker based motion capture, GPS sensor tracking, inertial tracking, and multiple camera filmography. However due to constraints of space operations many such methods are infeasible, such as inertial tracking systems which typically rely upon a gravity vector to normalize sensor readings, and traditional IR systems which are large and require extensive calibration. However multiple technologies have not yet been applied to space operations for these explicit purposes. Two of these include 3Dimensional Radio Frequency Identification RealTime Localization Systems (3D RFIDRTLS) and depth imaging systems which allow for 3D motion capture and volumetric scanning (such as those using IRdepth cameras like the Microsoft Kinect or Light Detection and Ranging / LightRadar systems, referred to as LIDAR)

    A Tool for the Automated Collection of Space Utilization Data: Three Dimensional Space Utilization Monitor

    Get PDF
    Space Human Factors and Habitability (SHFH) Element within the Human Research Program (HRP) and the Behavioral Health and Performance (BHP) Element are conducting research regarding Net Habitable Volume (NHV), the internal volume within a spacecraft or habitat that is available to crew for required activities, as well as layout and accommodations within the volume. NASA needs methods to unobtrusively collect NHV data without impacting crew time. Data required includes metrics such as location and orientation of crew, volume used to complete tasks, internal translation paths, flow of work, and task completion times. In less constrained environments methods exist yet many are obtrusive and require significant post-processing. Examplesused in terrestrial settings include infrared (IR) retro-reflective marker based motion capture, GPS sensor tracking, inertial tracking, and multi-camera methods Due to constraints of space operations many such methods are infeasible. Inertial tracking systems typically rely upon a gravity vector to normalize sensor readings,and traditional IR systems are large and require extensive calibration. However, multiple technologies have not been applied to space operations for these purposes. Two of these include: 3D Radio Frequency Identification Real-Time Localization Systems (3D RFID-RTLS) Depth imaging systems which allow for 3D motion capture and volumetric scanning (such as those using IR-depth cameras like the Microsoft Kinect or Light Detection and Ranging / Light-Radar systems, referred to as LIDAR
    corecore