16,310 research outputs found
A Birkhoff connection between quantum circuits and linear classical reversible circuits
Birkhoff's theorem tells how any doubly stochastic matrix can be decomposed as a weighted sum of permutation matrices. Similar theorems on unitary matrices reveal a connection between quantum circuits and linear classical reversible circuits. It triggers the question whether a quantum computer can be regarded as a superposition of classical reversible computers
On two subgroups of U(n), useful for quantum computing
As two basic building blocks for any quantum circuit, we consider the 1-qubit PHASOR circuit Phi(theta) and the 1-qubit NEGATOR circuit N(theta). Both are roots of the IDENTITY circuit. Indeed: both (NO) and N(0) equal the 2 x 2 unit matrix. Additionally, the NEGATOR is a root of the classical NOT gate. Quantum circuits (acting on w qubits) consisting of controlled PHASORs are represented by matrices from ZU(2(w)); quantum circuits consisting of controlled NEGATORs are represented by matrices from XU(2(w)). Here, ZU(n) and XU(n) are subgroups of the unitary group U(n): the group XU(n) consists of all n x n unitary matrices with all 2n line sums (i.e. all n row sums and all n column sums) equal to 1 and the group ZU(n) consists of all n x n unitary diagonal matrices with first entry equal to 1. Any U(n) matrix can be decomposed into four parts: U = exp(i alpha) Z(1)XZ(2), where both Z(1) and Z(2) are ZU(n) matrices and X is an XU(n) matrix. We give an algorithm to find the decomposition. For n = 2(w) it leads to a four-block synthesis of an arbitrary quantum computer
Research for Conservation and the Importance of Building Capacity and Story-Telling: Lessons from the Marine Conservation Space
What if the solution to our greatest environmental problem was trapped in the mind of a person from an under-represented community? How do we unlock existing potential and create opportunities for individuals to go beyond and do impactful research and conservation? How can we ensure we are proactive in our conservation research so that we can address environmental issues before they become long-term problems? How do we as a conservation community come together to build a Sri Lankan voice in the global arena? This talk will be delivered through the lens of my blue whale research and over-arching marine conservation efforts and experiences in Sri Lanka. I will highlight some of my personal efforts to shift the trajectory of marine conservation at a global level, while also highlighting local efforts to develop a more ocean-conscious society that can benefit our natural environment in the longer ter
Modulating active sites in MOFs for improved Lewis acid or base catalysis
International audienc
Isolation and mapping of a C3'H gene (CYP98A49) from globe artichoke, and its expression upon UV-C stress
Globe artichoke represents a natural source of phenolic compounds with dicaffeoylquinic acids along with their biosynthetic precursor chlorogenic acid (5-caffeoylquinic acid) as the predominant molecules. We report the isolation and characterization of a full-length cDNA and promoter of a globe artichoke p-coumaroyl ester 3¿-hydroxylase (CYP98A49), which is involved in both chlorogenic acid and lignin biosynthesis. Phylogenetic analyses demonstrated that this gene belongs to the CYP98 family. CYP98A49 was also heterologously expressed in yeast, in order to perform an enzymatic assay with p-coumaroylshikimate and p-coumaroylquinate as substrates. Real Time quantitative PCR analysis revealed that CYP98A49 expression is induced upon exposure to UV-C radiation. A single nucleotide polymorphism in the CYP98A49 gene sequence of two globe artichoke varieties used for genetic mapping allowed the localization of this gene to linkage group 10 within the previously developed map
- …