193 research outputs found

    Icebergs in the North Atlantic: Modelling circulation changes and glacio-marine deposition

    Get PDF
    In order to investigate meltwater events in the North Atlantic, a simple iceberg generation, drift, and melting routine was implemented in a high-resolution OGCM. Starting from the modelled last glacial state, every 25th day cylindrical model icebergs 300 meters high were released at 32 specific points along the coasts. Icebergs launched at the Barents Shelf margin spread a light meltwater lid over the Norwegian and Greenland Seas, shutting down the deep convection and the anti-clockwise circulation in this area. Due to the constraining ocean circulation, the icebergs produce a tongue of relatively cold and fresh water extending eastward from Hudson Strait that must develop at this location, regardless of iceberg origin. From the total amount of freshwater inferred by the icebergs, the thickness of the deposited IRD could be calculated in dependance of iceberg sediment concentration. In this way, typical extent and thickness of Heinrich layers could be reproduced, running the model for 250 years of steady state with constant iceberg meltwater inflow

    The MAJORANA DEMONSTRATOR: A Search for Neutrinoless Double-beta Decay of Germanium-76

    Full text link
    The {\sc Majorana} collaboration is searching for neutrinoless double beta decay using 76^{76}Ge, which has been shown to have a number of advantages in terms of sensitivities and backgrounds. The observation of neutrinoless double-beta decay would show that lepton number is violated and that neutrinos are Majorana particles and would simultaneously provide information on neutrino mass. Attaining sensitivities for neutrino masses in the inverted hierarchy region, 15−5015 - 50 meV, will require large, tonne-scale detectors with extremely low backgrounds, at the level of ∼\sim1 count/t-y or lower in the region of the signal. The {\sc Majorana} collaboration, with funding support from DOE Office of Nuclear Physics and NSF Particle Astrophysics, is constructing the {\sc Demonstrator}, an array consisting of 40 kg of p-type point-contact high-purity germanium (HPGe) detectors, of which ∼\sim30 kg will be enriched to 87% in 76^{76}Ge. The {\sc Demonstrator} is being constructed in a clean room laboratory facility at the 4850' level (4300 m.w.e.) of the Sanford Underground Research Facility (SURF) in Lead, SD. It utilizes a compact graded shield approach with the inner portion consisting of ultra-clean Cu that is being electroformed and machined underground. The primary aim of the {\sc Demonstrator} is to show the feasibility of a future tonne-scale measurement in terms of backgrounds and scalability.Comment: Proceedings for the MEDEX 2013 Conferenc

    Low Background Signal Readout Electronics for the MAJORANA DEMONSTRATOR

    Full text link
    The MAJORANA DEMONSTRATOR is a planned 40 kg array of Germanium detectors intended to demonstrate the feasibility of constructing a tonne-scale experiment that will seek neutrinoless double beta decay (0νββ0\nu\beta\beta) in 76Ge^{76}\mathrm{Ge}. Such an experiment would require backgrounds of less than 1 count/tonne-year in the 4 keV region of interest around the 2039 keV Q-value of the ββ\beta\beta decay. Designing low-noise electronics, which must be placed in close proximity to the detectors, presents a challenge to reaching this background target. This paper will discuss the MAJORANA collaboration's solutions to some of these challenges
    • …
    corecore