4 research outputs found
Fungus Metarhizium robertsii and neurotoxic insecticide affect gut immunity and microbiota in Colorado potato beetles
Fungal infections and toxicoses caused by insecticides may alter microbial communities and immune responses in the insect gut. We investigated the effects of Metarhizium robertsii fungus and avermectins on the midgut physiology of Colorado potato beetle larvae. We analyzed changes in the bacterial community, immunity- and stress-related gene expression, reactive oxygen species (ROS) production, and detoxification enzyme activity in response to topical infection with the M. robertsii fungus, oral administration of avermectins, and a combination of the two treatments. Avermectin treatment led to a reduction in microbiota diversity and an enhancement in the abundance of enterobacteria, and these changes were followed by the downregulation of Stat and Hsp90, upregulation of transcription factors for the Toll and IMD pathways and activation of detoxification enzymes. Fungal infection also led to a decrease in microbiota diversity, although the changes in community structure were not significant, except for the enhancement of Serratia. Fungal infection decreased the production of ROS but did not affect the gene expression of the immune pathways. In the combined treatment, fungal infection inhibited the activation of detoxification enzymes and prevented the downregulation of the JAK-STAT pathway caused by avermectins. The results of this study suggest that fungal infection modulates physiological responses to avermectins and that fungal infection may increase avermectin toxicosis by blocking detoxification enzymes in the gut
Comparative analysis of the immune response of the wax moth Galleria mellonella after infection with the fungi Cordyceps militaris and Metarhizium robertsii
Entomopathogenic fungi form different strategies of interaction with their insect hosts. The influence of funga
Pharmacokinetics of vaginal versus buccal misoprostol for labor induction at term
The IMPROVE study (NCT02408315) compared the efficacy and safety of vaginal and buccal administration of misoprostol for full-term, uncomplicated labor induction. This report compares the pharmacokinetics of misoprostol between vaginal and buccal routes. Women greater than or equal to 14 years of age undergoing induction of labor greater than or equal to 37 weeks gestation without significant complications were randomized to vaginal or buccal misoprostol 25 μg followed by 50 μg doses every 4 h. Misoprostol acid concentrations were determined using liquid chromatography-tandem mass spectrometry for the first 8 h in a subgroup of participants. A population pharmacokinetic model was developed using NONMEM. Plasma concentrations (n = 469) from 47 women were fit to a one-compartment nonlinear clearance model. The absorption rate constant (ka ) was dependent on both route and dose of administration: buccal 25 μg 0.724 (95% confidence interval, 0.54-0.92) h-1 ; 50 μg 0.531 (0.37-0.63) h-1 ; vaginal 25 μg 0.507 (0. 2-1. 4) h-1 ; and 50 μg 0.246 (0.103-0.453) h-1 . Relative bioavailability for vaginal compared to buccal route was 2.4 (1.63-4.77). There was no effect of body mass index or age on apparent clearance 705 (431-1099) L/h or apparent volume of distribution 632 (343-1008) L. The area under the concentration-time curve to 4 h following the first 25 μg dose of misoprostol was 16.5 (15.4-17.5) pg h/ml for buccal and 34.3 (32.5-36.1) pg h/ml for vaginal administration. The rate of buccal absorption was two times faster than that of vaginal, whereas bioavailability of vaginal administration was 2.4 times higher than that of buccal. Decreased time to delivery observed with vaginal dosing may be due to higher exposure to misoprostol acid compared to buccal