1,260 research outputs found

    Cech and de Rham Cohomology of Integral Forms

    Full text link
    We present a study on the integral forms and their Cech/de Rham cohomology. We analyze the problem from a general perspective of sheaf theory and we explore examples in superprojective manifolds. Integral forms are fundamental in the theory of integration in supermanifolds. One can define the integral forms introducing a new sheaf containing, among other objects, the new basic forms delta(dtheta) where the symbol delta has the usual formal properties of Dirac's delta distribution and acts on functions and forms as a Dirac measure. They satisfy in addition some new relations on the sheaf. It turns out that the enlarged sheaf of integral and "ordinary" superforms contains also forms of "negative degree" and, moreover, due to the additional relations introduced, its cohomology is, in a non trivial way, different from the usual superform cohomology.Comment: 20 pages, LaTeX, we expanded the introduction, we add a complete analysis of the cohomology and we derive a new duality between cohomology group

    Ground state correlations and anharmonicity of vibrations

    Get PDF
    A consistent treatment of the ground state correlations beyond the random phase approximation including their influence on the pairing and phonon-phonon coupling in nuclei is presented. A new general system of nonlinear equations for the quasiparticle phonon model (QPM) is derived. It is shown that this system contains as a particular case all equations derived for the QPM early. New additional Pauli principle corrections resulting in the anharmonical shifts of energies of the two-phonon configurations are found. A correspondence between the generalized QPM equations and the nuclear field theory is discussed.Comment: 22 pages, 3 postscript figures, added reference

    Dirac equation in the magnetic-solenoid field

    Get PDF
    We consider the Dirac equation in the magnetic-solenoid field (the field of a solenoid and a collinear uniform magnetic field). For the case of Aharonov-Bohm solenoid, we construct self-adjoint extensions of the Dirac Hamiltonian using von Neumann's theory of deficiency indices. We find self-adjoint extensions of the Dirac Hamiltonian in both above dimensions and boundary conditions at the AB solenoid. Besides, for the first time, solutions of the Dirac equation in the magnetic-solenoid field with a finite radius solenoid were found. We study the structure of these solutions and their dependence on the behavior of the magnetic field inside the solenoid. Then we exploit the latter solutions to specify boundary conditions for the magnetic-solenoid field with Aharonov-Bohm solenoid.Comment: 23 pages, 2 figures, LaTex fil

    Self-adjoint extensions and spectral analysis in the generalized Kratzer problem

    Full text link
    We present a mathematically rigorous quantum-mechanical treatment of a one-dimensional nonrelativistic motion of a particle in the potential field V(x)=g1x1+g2x2V(x)=g_{1}x^{-1}+g_{2}x^{-2}. For g2>0g_{2}>0 and g1<0g_{1}<0, the potential is known as the Kratzer potential and is usually used to describe molecular energy and structure, interactions between different molecules, and interactions between non-bonded atoms. We construct all self-adjoint Schrodinger operators with the potential V(x)V(x) and represent rigorous solutions of the corresponding spectral problems. Solving the first part of the problem, we use a method of specifying s.a. extensions by (asymptotic) s.a. boundary conditions. Solving spectral problems, we follow the Krein's method of guiding functionals. This work is a continuation of our previous works devoted to Coulomb, Calogero, and Aharonov-Bohm potentials.Comment: 31 pages, 1 figur
    corecore