1,428 research outputs found
Dirac equation in the magnetic-solenoid field
We consider the Dirac equation in the magnetic-solenoid field (the field of a
solenoid and a collinear uniform magnetic field). For the case of Aharonov-Bohm
solenoid, we construct self-adjoint extensions of the Dirac Hamiltonian using
von Neumann's theory of deficiency indices. We find self-adjoint extensions of
the Dirac Hamiltonian in both above dimensions and boundary conditions at the
AB solenoid. Besides, for the first time, solutions of the Dirac equation in
the magnetic-solenoid field with a finite radius solenoid were found. We study
the structure of these solutions and their dependence on the behavior of the
magnetic field inside the solenoid. Then we exploit the latter solutions to
specify boundary conditions for the magnetic-solenoid field with Aharonov-Bohm
solenoid.Comment: 23 pages, 2 figures, LaTex fil
A dynamical inconsistency of Horava gravity
The dynamical consistency of the non-projectable version of Horava gravity is
investigated by focusing on the asymptotically flat case. It is argued that for
generic solutions of the constraint equations the lapse must vanish
asymptotically. We then consider particular values of the coupling constants
for which the equations are tractable and in that case we prove that the lapse
must vanish everywhere -- and not only at infinity. Put differently, the
Hamiltonian constraints are generically all second-class. We then argue that
the same feature holds for generic values of the couplings, thus revealing a
physical inconsistency of the theory. In order to cure this pathology, one
might want to introduce further constraints but the resulting theory would then
lose much of the appeal of the original proposal by Horava. We also show that
there is no contradiction with the time reparametrization invariance of the
action, as this invariance is shown to be a so-called "trivial gauge symmetry"
in Horava gravity, hence with no associated first-class constraints.Comment: 28 pages, 2 references adde
Q-phonon description of low lying 1^- two-phonon states in spherical nuclei
The properties of 1^-_1 two-phonon states and the characteristics of E1
transition probabilities between low-lying collective states in spherical
nuclei are analysed within the Q-phonon approach to the description of
collective states. Several relations between observables are obtained.
Microscopic calculations of the E1 0^+_1 -> 1^-_1 transition matrix elements
are performed on the basis of the RPA. A satisfactory description of the
experimental data is obtained.Comment: 16 pages, 2 figures, 9 table
Reduction of quantum noise in optical interferometers using squeezed light
We study the photon counting noise in optical interferometers used for
gravitational wave detection. In order to reduce quantum noise a squeezed
vacuum state is injected into the usually unused input port. Here, we
specifically investigate the so called `dark port case', when the beam splitter
is oriented close to 90{\deg} to the incoming laser beam, such that nearly all
photons go to one output port of the interferometer, and only a small fraction
of photons is seen in the other port (`dark port'). For this case it had been
suggested that signal amplification is possible without concurrent noise
amplification [R.Barak and Y.Ben-Aryeh, J.Opt.Soc.Am.B25(361)2008]. We show
that by injection of a squeezed vacuum state into the second input port,
counting noise is reduced for large values of the squeezing factor, however the
signal is not amplified. Signal strength only depends on the intensity of the
laser beam.Comment: 8 pages, 1 figur
- …