938 research outputs found
Quantum ballistic experiment on antihydrogen fall
We study an interferometric approach to measure gravitational mass of
antihydrogen. The method consists of preparing a coherent superposition of
antihydrogen quantum state localized near a material surface in the
gravitational field of the Earth, and then observing the time distribution of
annihilation events followed after the free fall of an initially prepared
superposition from a given height to the detector plate. We show that a
corresponding time distribution is related to the momentum distribution in the
initial state that allows its precise measurement. This approach is combined
with a method of production of a coherent superposition of gravitational states
by inducing a resonant transition using oscillating gradient magnetic field. We
estimate an accuracy of measuring the gravitational mass of antihydrogen atom
which could be deduced from such a measurement.Comment: arXiv admin note: text overlap with arXiv:1403.478
A New Constraint for the Coupling of Axion-like particles to Matter via Ultra-Cold Neutron Gravitational Experiments
We present a new constraint for the axion monopole-dipole coupling in the
range of 1 micrometer to a few millimeters, previously unavailable for
experimental study. The constraint was obtained using our recent results on the
observation of neutron quantum states in the Earth's gravitational field. We
exploit the ultimate sensitivity of ultra-cold neutrons (UCN) in the lowest
gravitational states above a material surface to any additional interaction
between the UCN and the matter, if the characteristic interaction range is
within the mentioned domain. In particular, we find that the upper limit for
the axion monopole-dipole coupling constant is (g_p g_s)/(\hbar c)<2 x 10^{-15}
for the axion mass in the ``promising'' axion mass region of ~1 meV.Comment: 5 pages 3 figure
Gravitational resonance spectroscopy with an oscillating magnetic field gradient in the GRANIT flow through arrangement
Gravitational resonance spectroscopy consists in measuring the energy
spectrum of bouncing ultracold neutrons above a mirror by inducing resonant
transitions between different discrete quantum levels. We discuss how to induce
the resonances with a flow through arrangement in the GRANIT spectrometer,
excited by an oscillating magnetic field gradient. The spectroscopy could be
realized in two distinct modes (so called DC and AC) using the same device to
produce the magnetic excitation. We present calculations demonstrating the
feasibility of the newly proposed AC mode
Quantum reflection of antihydrogen from nanoporous media
We study quantum reflection of antihydrogen atoms from nanoporous media due
to the Casimir-Polder (CP) potential. Using a simple effective medium model, we
show a dramatic increase of the probability of quantum reflection of
antihydrogen atoms if the porosity of the medium increases. We discuss the
limiting case of reflections at small energies, which have interesting
applications for trapping and guiding antihydrogen using material walls
Frequency shifts in gravitational resonance spectroscopy
Quantum states of ultracold neutrons in the gravitational field are to be
characterized through gravitational resonance spectroscopy. This paper
discusses systematic effects that appear in the spectroscopic measurements. The
discussed frequency shifts, which we call Stern-Gerlach shift, interference
shift, and spectator state shift, appear in conceivable measurement schemes and
have general importance. These shifts have to be taken into account in
precision experiments
- …