13 research outputs found
Development of a bioluminescent nitroreductase probe for preclinical imaging
Bacterial nitroreductases (NTRs) have been widely utilized in the development of novel antibiotics, degradation of pollutants, and gene-directed enzyme prodrug therapy (GDEPT) of cancer that reached clinical trials. In case of GDEPT, since NTR is not naturally present in mammalian cells, the prodrug is activated selectively in NTR-transformed cancer cells, allowing high efficiency treatment of tumors. Currently, no bioluminescent probes exist for sensitive, non-invasive imaging of NTR expression. We therefore developed a "NTR caged luciferin" (NCL) probe that is selectively reduced by NTR, producing light proportional to the NTR activity. Here we report successful application of this probe for imaging of NTR in vitro, in bacteria and cancer cells, as well as in vivo in mouse models of bacterial infection and NTR-expressing tumor xenografts. This novel tool should significantly accelerate the development of cancer therapy approaches based on GDEPT and other fields where NTR expression is important.publishedVersio
Comparative evaluation of affibody- and antibody fragments-based CAIX imaging probes in mice bearing renal cell carcinoma xenografts
Contains fulltext :
209411.pdf (publisher's version ) (Open Access
Molecular Design of HER3-Targeting Affibody Molecules : Influence of Chelator and Presence of HEHEHE-Tag on Biodistribution of 68Ga-Labeled Tracers
Affibody-based imaging of HER3 is a promising approach for patient stratification. We investigated the influence of a hydrophilic HEHEHE-tag ((HE)3-tag) and two different gallium-68/chelator-complexes on the biodistribution of Z08698 with the aim to improve the tracer for PET imaging. Affibody molecules (HE)3-Z08698-X and Z08698-X (X = NOTA, NODAGA) were produced and labeled with gallium-68. Binding specificity and cellular processing were studied in HER3-expressing human cancer cell lines BxPC-3 and DU145. Biodistribution was studied 3 h p.i. in Balb/c nu/nu mice bearing BxPC-3 xenografts. Mice were imaged 3 h p.i. using microPET/CT. Conjugates were stably labeled with gallium-68 and bound specifically to HER3 in vitro and in vivo. Association to cells was rapid but internalization was slow. Uptake in tissues, including tumors, was lower for (HE)3-Z08698-X than for non-tagged variants. The neutral [68Ga]Ga-NODAGA complex reduced the hepatic uptake of Z08698 compared to positively charged [68Ga]Ga-NOTA-conjugated variants. The influence of the chelator was more pronounced in variants without (HE)3-tag. In conclusion, hydrophilic (HE)3-tag and neutral charge of the [68Ga]Ga-NODAGA complex promoted blood clearance and lowered hepatic uptake of Z08698. [68Ga]Ga-(HE)3-Z08698-NODAGA was considered most promising, providing the lowest blood and hepatic uptake and the best imaging contrast among the tested variants.De 2 första författarna delar förstaförfattarskapet.</p
Cyclic versus Noncyclic Chelating Scaffold for Zr-89-Labeled ZEGFR:2377 Affibody Bioconjugates Targeting Epidermal Growth Factor Receptor Overexpression
Zirconium-89 is an emerging radionuclide for positron emission tomography (PET) especially for biomolecules with slow e pharmacokinetics as due to its longer half-life, in comparison to fluorine 18 and gallium-68, imaging at late time points is feasible. Desferrioxamine B (DFO), a linear bifunctional chelator (BFC) is mostly used for this radionuclide so far but shows limitations regarding stability. Our group recently reported on fusarinine C (FSC) with similar zirconium-89 complexing properties but potentially higher stability related to its cyclic structure. This study was designed to compare FSC and DFO head-to head as bifunctional chelators for "Zr-radiolabeled EGFR-targeting ZEGFR:2377 affibody bioconjugates. FSC-ZEGFR:2377 and DFOZEGFR:2377 were evaluated regarding radiolabeling, in vitro stability, specificity, cell uptake, receptor affinity, biodistribution, and microPET-CT imaging. Both conjugates were efficiently labeled with zirconium-89 at room temperature but radiochemical yields increased substantially at elevated temperature, 85 degrees C. Both 89Zr-FSC-ZEGFR:2377 and Zr-89-DFO-ZEGFR:2377 revealed remarkable specificity, affinity and slow cell-line dependent internalization. Radiolabeling at 85 degrees C showed comparable results in A431 tumor xenografted mice with minor differences regarding blood clearance, tumor and liver uptake. In comparison 89ZrDFO-ZEGFR:2377, radiolabeled at room temperature, showed a significant difference regarding tumor-to-organ ratios. MicroPET-CT imaging studies of Zr-89-FSC-ZEGFR:2377 as well as Zr-89-DFO-ZEGFR:2377 confirmed these findings. In summary we were able to show that FSC is a suitable alternative to DFO for radiolabeling of biomolecules with zirconium-89. Furthermore, our findings indicate that Zr-89-radiolabeling of DFO conjugates at higher temperature reduces off-chelate binding leading to significantly improved tumor-to-organ ratios and therefore enhancing image contrast
Influence of composition of cysteine-containing peptide-based chelators on biodistribution of 99mTc-labeled anti-EGFR affibody molecules
Epidermal growth factor receptor (EGFR) is overexpressed in a number of cancers and is the molecular target for several anti-cancer therapeutics. Radionuclide molecular imaging of EGFR expression should enable personalization of anti-cancer treatment. Affibody molecule is a promising type of high-affinity imaging probes based on a non-immunoglobulin scaffold. A series of derivatives of the anti-EGFR affibody molecule ZEGFR:2377, having peptide-based cysteine-containing chelators for conjugation of Tc-99m, was designed and evaluated. It was found that glutamate-containing chelators Gly-Gly-Glu-Cys (GGEC), Gly-Glu-Glu-Cys (GEEC) and Glu-Glu-Glu-Cys (EEEC) provide the best labeling stability. The glutamate containing conjugates bound to EGFR-expressing cells specifically and with high affinity. Specific targeting of EGFR-expressing xenografts in mice was demonstrated. The number of glutamate residues in the chelator had strong influence on biodistribution of radiolabeled affibody molecules. Increase of glutamate content was associated with lower uptake in normal tissues. The Tc-99m-labeled variant containing the EEEC chelator provided the highest tumor-to-organ ratios. In conclusion, optimizing the composition of peptide-based chelators enhances contrast of imaging of EGFR-expression using affibody molecules
Improved contrast of affibody-mediated imaging of HER3 expression in mouse xenograft model through co-injection of a trivalent affibody for in vivo blocking of hepatic uptake
Human epidermal growth factor receptor type 3 (HER3) plays a crucial role in the progression of many cancer types. In vivo radionuclide imaging could be a reliable method for repetitive detection of HER3-expression in tumors. The main challenge of HER3-imaging is the low expression in tumors together with endogenous receptor expression in normal tissues, particularly the liver. A HER3-targeting affibody molecule labeled with radiocobalt via a NOTA chelator [Co-57]Co-NOTA-Z(08699) has demonstrated the most favorable biodistribution profile with the lowest unspecific hepatic uptake and high activity uptake in tumors. We hypothesized that specific uptake of labeled affibody monomer might be selectively blocked in the liver but not in tumors by a co-injection of non-labeled corresponding trivalent affibody (Z(08699))(3). Biodistribution of [Co-57]Co-NOTA-Z(08699) and [In-111]ln-DOTA-(Z(08699))(3) was studied in BxPC-3 xenografted mice. [Co-57]Co-NOTA-Z(08699) was co-injected with unlabeled trivalent affibody DOTA-(Z(08699))(3) at different monomer:trimer molar ratios. HER3-expression in xenografts was imaged using [Co-57]Co-NOTA-Z(08699) and [Co-57]Co-NOTA-Z(08699): DOTA-(Z(08699))(3). Hepatic activity uptake of [Co-57] Co-NOTA-Z(08699): DOTA-(Z(08699))(3) decreased with increasing monomer:trimer molar ratio. The tumor activity uptake and tumor-to-liver ratios were the highest for the 1:3 ratio. SPECT/CT images confirmed the biodistribution data. Imaging of HER3 expression can be improved by co-injection of a radiolabeled monomeric affi body-based imaging probe together with a trivalent affibody
Development of a Bioluminescent Nitroreductase Probe for Preclinical Imaging.
Bacterial nitroreductases (NTRs) have been widely utilized in the development of novel antibiotics, degradation of pollutants, and gene-directed enzyme prodrug therapy (GDEPT) of cancer that reached clinical trials. In case of GDEPT, since NTR is not naturally present in mammalian cells, the prodrug is activated selectively in NTR-transformed cancer cells, allowing high efficiency treatment of tumors. Currently, no bioluminescent probes exist for sensitive, non-invasive imaging of NTR expression. We therefore developed a "NTR caged luciferin" (NCL) probe that is selectively reduced by NTR, producing light proportional to the NTR activity. Here we report successful application of this probe for imaging of NTR in vitro, in bacteria and cancer cells, as well as in vivo in mouse models of bacterial infection and NTR-expressing tumor xenografts. This novel tool should significantly accelerate the development of cancer therapy approaches based on GDEPT and other fields where NTR expression is important
Comparative evaluation of affibody- and antibody fragments-based CAIX imaging probes in mice bearing renal cell carcinoma xenografts
Carbonic anhydrase IX (CAIX) is a cancer-associated molecular target for several classes of therapeutics. CAIX is overexpressed in a large fraction of renal cell carcinomas (RCC). Radionuclide molecular imaging of CAIX-expression might offer a non-invasive methodology for stratification of patients with disseminated RCC for CAIX-targeting therapeutics. Radiolabeled monoclonal antibodies and their fragments are actively investigated for imaging of CAIX expression. Promising alternatives are small non-immunoglobulin scaffold proteins, such as affibody molecules. A CAIX-targeting affibody ZCAIX:2 was re-designed with the aim to decrease off-target interactions and increase imaging contrast. The new tracer, DOTA-HE3-ZCAIX:2, was labeled with In-111 and characterized in vitro. Tumor-targeting properties of [In-111]In-DOTA-HE3-ZCAIX:2 were compared head-to-head with properties of the parental variant, [(99)mTc]Tc(CO)(3)-HE3-ZCAIX:2, and the most promising antibody fragment-based tracer, [In-111]In-DTPA-G250(Fab')(2), in the same batch of nude mice bearing CAIX-expressing RCC xenografts. Compared to the (99)mTc-labeled parental variant, [In-111]In-DOTA-HE3-ZCAIX:2 provides significantly higher tumor-to-lung, tumor-to-bone and tumor-to-liver ratios, which is essential for imaging of CAIX expression in the major metastatic sites of RCC. [In-111]In-DOTA-HE3-ZCAIX:2 offers significantly higher tumor-to-organ ratios compared with [In-111]In-G250(Fab']2. In conclusion, [In-111]In-DOTA-HE3-ZCAIX:2 can be considered as a highly promising tracer for imaging of CAIX expression in RCC metastases based on our results and literature data
Cyclic versus Noncyclic Chelating Scaffold for <sup>89</sup>Zr-Labeled ZEGFR:2377 Affibody Bioconjugates Targeting Epidermal Growth Factor Receptor Overexpression
Zirconium-89
is an emerging radionuclide for positron emission
tomography (PET) especially for biomolecules with slow pharmacokinetics
as due to its longer half-life, in comparison to fluorine-18 and gallium-68,
imaging at late time points is feasible. Desferrioxamine B (DFO),
a linear bifunctional chelator (BFC) is mostly used for this radionuclide
so far but shows limitations regarding stability. Our group recently
reported on fusarinine C (FSC) with similar zirconium-89 complexing
properties but potentially higher stability related to its cyclic
structure. This study was designed to compare FSC and DFO head-to-head
as bifunctional chelators for <sup>89</sup>Zr-radiolabeled EGFR-targeting
ZEGFR:2377 affibody bioconjugates. FSC-ZEGFR:2377 and DFO-ZEGFR:2377
were evaluated regarding radiolabeling, <i>in vitro</i> stability,
specificity, cell uptake, receptor affinity, biodistribution, and
microPET-CT imaging. Both conjugates were efficiently labeled with
zirconium-89 at room temperature but radiochemical yields increased
substantially at elevated temperature, 85 °C. Both <sup>89</sup>Zr-FSC-ZEGFR:2377 and <sup>89</sup>Zr-DFO-ZEGFR:2377 revealed remarkable
specificity, affinity and slow cell-line dependent internalization.
Radiolabeling at 85 °C showed comparable results in A431 tumor
xenografted mice with minor differences regarding blood clearance,
tumor and liver uptake. In comparison <sup>89</sup>Zr-DFO-ZEGFR:2377,
radiolabeled at room temperature, showed a significant difference
regarding tumor-to-organ ratios. MicroPET-CT imaging studies of <sup>89</sup>Zr-FSC-ZEGFR:2377 as well as <sup>89</sup>Zr-DFO-ZEGFR:2377
confirmed these findings. In summary we were able to show that FSC
is a suitable alternative to DFO for radiolabeling of biomolecules
with zirconium-89. Furthermore, our findings indicate that <sup>89</sup>Zr-radiolabeling of DFO conjugates at higher temperature reduces
off-chelate binding leading to significantly improved tumor-to-organ
ratios and therefore enhancing image contrast
Imaging of NTR activity in cells and in <i>in vivo</i> cancer model with NCL.
<p>(A) Concentration-dependent uncaging of NCL in MDA-MB-231 NTR+luc+ cancer cells in comparison with luciferin. (B) Selectivity of NTR imaging by NCL in the same cells in comparison with NTR-luc+ cells. The dashed line indicates background (cells only), *P = 0.0001. (C) <i>In vivo</i> imaging of NTR activity in subcutaneous NTR+ and NTR- xenografts (n = 5). Total luminescence over 1 h from IP injection of luciferin (1.5 mg) and NCL (1.9 mg). d) Representative images of mice 15 min post injection of luciferin or NCL.</p