13 research outputs found

    Choose your amendment wisely: Zero-valent iron nanoparticles offered no advantage over microparticles in a laboratory study on metal immobilization in a contaminated soil

    No full text
    The potential use of zero-valent iron (ZVI) nanoparticles (i.e., <100 nm in size) for the remediation of metal-contaminated soils has sparked a flurry of research in recent years. However, even reading a large number of these papers cannot completely dispel doubts that ZVI nanoparticles are indeed superior to ZVI microparticles (e.g., iron powder or grit) in immobilizing metals and metalloids in soils. Our primary objective was to compare the adsorption properties of iron-based amendments (ZVI micro- and nanoparticles, natural iron oxides) supplied in a biochar matrix in soils contaminated by a copper-nickel (Cu/Ni) smelter on the Kola Peninsula in Russia. The following iron-containing amendments were added to the studied soil: a composite of ZVI nanoparticles and biochar (synthesized by pyrolysis of iron-impregnated biochar), a mixture of iron powder (i.e., ZVI microparticles) with biochar, and a mixture of iron oxides (from natural ferromanganese nodules) with biochar. Perennial ryegrass (Lolium perenne L.) was grown in pots on untreated and amended soils for 21 days under laboratory conditions. In our time-limited study, ZVI nanoparticles did not prove superior to ZVI microparticles or natural iron oxides at immobilizing metals in copper- and nickel-contaminated soil. In other words, ZVI particles size was irrelevant under the experimental setup of this study in its effects on exchangeable metal concentrations, foliar elemental concentrations, and plant growth. © 2022 Elsevier Lt

    Gypsum soil amendment in metal-polluted soils—an added environmental hazard

    No full text
    Scientists around the world have long been searching for effective strategies to reduce the bioavailability of metals in contaminated soils. In case of metal-spiked soils, some studies have proposed gypsum as a soil amendment to alleviate metal phytotoxicity. However, for real field-collected soils, evidence on the efficacy of gypsum as a metal phytotoxicity amendment is limited. Therefore, the present study was designed to examine the effect of gypsum on plant growth in soils polluted by a copper smelter. We grew perennial ryegrass on untreated and gypsum-treated soils (at a dose of 3% by weight) under laboratory conditions. We found that gypsum had no effect on alleviating metal phytotoxicity in our soils. We also demonstrated – for the first time – that gypsum increased the concentrations of soluble metals in the soil, enhancing metal uptake by plants. The calcium ions from gypsum displace metals in the soil exchangeable complex; however, the metals do not get immobilized in soils because gypsum is a neutral salt. While our results contrast with the Terrestrial Biotic Ligand Model, that Model has never been tested on real industrially polluted soils but only on metal-spiked soils. Our main conclusion is that gypsum is ineffective in alleviating metal phytotoxicity in real industrially polluted soils and, moreover, its use is inappropriate as a soil remediation method, because it increases the environmental hazard rather than reducing it. Our study is the very first attempt to recognize that gypsum is a hazardous material when used to ameliorate soils polluted by metals. © 2021 Elsevier Lt

    Root Elongation Method for the Quality Assessment of Metal-Polluted Soils: Whole Soil or Soil-Water Extract?

    No full text
    Root elongation method may be implemented using two internationally accepted protocols: exposing plants to either soil-water extract or whole soil. But which of the two protocols is more suitable for root elongation analysis undertaken for the quality assessment of metal-polluted soils? Soils were sampled at various distances from the site of the Middle Urals Copper Smelter located in Russia. White mustard was used as a bioindicator. We observed considerable differences in root elongation under the two protocols. In plants grown in whole soil, root length inversely correlated with pollution index, but in soil-water extract, metal concentrations had no effect on root length. Nutrient and metal concentrations in the soil-water extract were not buffered, due to the absence of the solid soil phase. It is for this reason that in highly polluted soils, root growth was greater in soil-water extracts rather than in whole soils, whereas in background soils (in the absence of toxicity), root growth was greater in whole soils compared with soil-water extracts. The quantity, intensity, and capacity factors are a plausible explanation for the differences in root length between the two protocols. The soil-water extract does not represent actual soil with respect to the desorption-dissolution reactions that take place between the soil solid phase and the soil solution. For this reason, whole soil protocol should be used for measuring root elongation given that only under this protocol, direct contact between metal-polluted soil and test organisms correctly replicates the risks inherent in the actual soil habitat. © 2020, Sociedad Chilena de la Ciencia del Suelo
    corecore